SVM and KNN Based SGO Feature Selection Algorithm for Breast Cancer Diagnosis

2020 International journal of recent technology and engineering  
In diagnosis and prediction systems, algorithms working on datasets with a high number of dimensions tend to take more time than those with fewer dimensions. Feature subset selection algorithms enhance the efficiency of Machine Learning algorithms in prediction problems by selecting a subset of the total features and thus pruning redundancy and noise. In this article, such a feature subset selection method is proposed and implemented to diagnose breast cancer using Support Vector Machine (SVM)
more » ... ctor Machine (SVM) and K-Nearest Neighbor (KNN) algorithms. This feature selection algorithm is based on Social Group Optimization (SGO) an evolutionary algorithm. Higher accuracy in diagnosing breast cancer is achieved using our proposed model when compared to other feature selection-based Machine Learning algorithms
doi:10.35940/ijrte.d4428.038620 fatcat:lztbh5wyefh6zkchihsq7liv34