Multi-Contrast Multi-Atlas Parcellation of Diffusion Tensor Imaging of the Human Brain

Xiaoying Tang, Shoko Yoshida, John Hsu, Thierry A. G. M. Huisman, Andreia V. Faria, Kenichi Oishi, Kwame Kutten, Andrea Poretti, Yue Li, Michael I. Miller, Susumu Mori, Gaolang Gong
<span title="2014-05-08">2014</span> <i title="Public Library of Science (PLoS)"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/s3gm7274mfe6fcs7e3jterqlri" style="color: black;">PLoS ONE</a> </i> &nbsp;
In this paper, we propose a novel method for parcellating the human brain into 193 anatomical structures based on diffusion tensor images (DTIs). This was accomplished in the setting of multi-contrast diffeomorphic likelihood fusion using multiple DTI atlases. DTI images are modeled as high dimensional fields, with each voxel exhibiting a vector valued feature comprising of mean diffusivity (MD), fractional anisotropy (FA), and fiber angle. For each structure, the probability distribution of
more &raquo; ... h element in the feature vector is modeled as a mixture of Gaussians, the parameters of which are estimated from the labeled atlases. The structure-specific feature vector is then used to parcellate the test image. For each atlas, a likelihood is iteratively computed based on the structure-specific vector feature. The likelihoods from multiple atlases are then fused. The updating and fusing of the likelihoods is achieved based on the expectation-maximization (EM) algorithm for maximum a posteriori (MAP) estimation problems. We first demonstrate the performance of the algorithm by examining the parcellation accuracy of 18 structures from 25 subjects with a varying degree of structural abnormality. Dice values ranging 0.8-0.9 were obtained. In addition, strong correlation was found between the volume size of the automated and the manual parcellation. Then, we present scan-rescan reproducibility based on another dataset of 16 DTI images -an average of 3.73%, 1.91%, and 1.79% for volume, mean FA, and mean MD respectively. Finally, the range of anatomical variability in the normal population was quantified for each structure.
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1371/journal.pone.0096985">doi:10.1371/journal.pone.0096985</a> <a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pubmed/24809486">pmid:24809486</a> <a target="_blank" rel="external noopener" href="https://pubmed.ncbi.nlm.nih.gov/PMC4014574/">pmcid:PMC4014574</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/eo7sowgxdjdo3osly5ndxntqti">fatcat:eo7sowgxdjdo3osly5ndxntqti</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20171010003209/http://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0096985&amp;type=printable" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/b5/40/b540c3957ebb52d819a8b689692c958e79029fce.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1371/journal.pone.0096985"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="unlock alternate icon" style="background-color: #fb971f;"></i> plos.org </button> </a> <a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4014574" title="pubmed link"> <button class="ui compact blue labeled icon button serp-button"> <i class="file alternate outline icon"></i> pubmed.gov </button> </a>