Influence of Ultrasound Impact in the Process of the Stacking Cycle, on the Properties and Structure of the Surfaced Metal from 12cR18nI10tI steel

Sergey Dmitrievich Neulybin
2020 International Journal of Emerging Trends in Engineering Research  
Additive technologies (АТ), or layered synthesis technologies, are one of the most dynamically developing areas of "digital" production. A common problem of additive technologies is to ensure the proper microstructure of the synthesized material and the elimination of defects. The use of filler wire as a working material allows you to get rid of the problems associated with the low productivity of existing methods, the high cost of equipment used, and the limited types of materials used, due to
more » ... the use of powder systems. Products made of stainless chromium-nickel steels are widely used in various industries. The main problem with additive technologies is to ensure the properties of laminates not lower than those obtained by traditional methods. Characteristic defects of laminated materials obtained by surfacing are increased porosity, non-metallic inclusions, a decrease in ductility, and for high-alloy steels, a loss of special properties. This predetermined the development of research in the field of additional technological measures to improve the final properties of the product. Widely known methods based on the deformation effect on the surfacing zone. This paper presents the results of a study of the effect of ultrasonic vibrations on the structure and properties of the deposited steel 12Cr18Ni10Ti. The welding of wire grade 12Cr18Ni10Ti was carried out by arc welding with a non-consumable electrode in a protective argon gas medium. It was found that ultrasonic influence has an effect on the final grain size, structure formation and hardness, as well as on the geometry of the deposited layer. Studies show that the use of ultrasonic vibrations in the process of surfacing can be applied in the design of equipment for the implementation of processes of additive production.
doi:10.30534/ijeter/2020/53872020 fatcat:izb3iqd55jacfjseemw7p5tjda