A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2022; you can also visit the original URL.
The file type is application/pdf
.
On Commutativity of Prime Rings with Symmetric Left θ-3- Centralizers
2021
Al-Qadisiyah Journal Of Pure Science
Let R be an associative ring with center Z(R) , I be a nonzero ideal of R and be an automorphism of R . An 3-additive mapping M:RxRxR R is called a symmetric left -3-centralizer if M(u1y,u2 ,u3)=M(u1,u2,u3)(y) holds for all y, u1, u2, u3 R . In this paper , we shall investigate the commutativity of prime rings admitting symmetric left -3-centralizer satisfying any one of the following conditions : (i)M([u ,y], u2, u3) [(u), (y)] = 0 (ii)M((u ∘ y), u2, u3) ((u) ∘ (y)) = 0 (iii)M(u2, u2, u3) (u2)
doi:10.29350/qjps.2021.26.4.1392
fatcat:fuwrlygtzvgflinn32e4lpnega