Impulse: building a smarter memory controller

J. Carter, W. Hsieh, L. Stoller, M. Swanson, Lixin Zhang, E. Brunvand, A. Davis, Chen-Chi Kuo, R. Kuramkote, M. Parker, L. Schaelicke, T. Tateyama
1999 Proceedings Fifth International Symposium on High-Performance Computer Architecture  
Impulse is a new memory system architecture that adds two important features to a traditional memory controller. First, Impulse supports application-specific optimizations through configurable physical address remapping. By remapping physical addresses, applications control how their data is accessed and cached, improving their cache and bus utilization. Second, Impulse supports prefetching at the memory controller, which can hide much of the latency of DRAM accesses. In this paper we describe
more » ... he design of the Impulse architecture, and show how an Impulse memory system can be used to improve the performance of memory-bound programs. For the NAS conjugate gradient benchmark, Impulse improves performance by 67%. Because it requires no modification to processor, cache, or bus designs, Impulse can be adopted in conventional systems. In addition to scientific applications, we expect that Impulse will benefit regularly strided, memory-bound applications of commercial importance, such as database and multimedia programs.
doi:10.1109/hpca.1999.744334 dblp:conf/hpca/CarterHSSZBDKKPST99 fatcat:qvr2a6fb6neuziaubqvuxgetni