Good bases for tame polynomials

Mathias Schulze
<span title="">2005</span> <i title="Elsevier BV"> <a target="_blank" rel="noopener" href="" style="color: black;">Journal of symbolic computation</a> </i> &nbsp;
An algorithm to compute a good basis of the Brieskorn lattice of a cohomologically tame polynomial is described. This algorithm is based on the results of C. Sabbah and generalizes the algorithm by A. Douai for convenient Newton non-degenerate polynomials.
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="">doi:10.1016/j.jsc.2004.10.001</a> <a target="_blank" rel="external noopener" href="">fatcat:euiltgtkergtflucu5ghmtcha4</a> </span>
<a target="_blank" rel="noopener" href="" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href=""> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="external alternate icon"></i> </button> </a>