Restoring the Sense of Touch Using a Sensorimotor Demultiplexing Neural Interface

Patrick D. Ganzer, Samuel C. Colachis, Michael A. Schwemmer, David A. Friedenberg, Collin F. Dunlap, Carly E. Swiftney, Adam F. Jacobowitz, Doug J. Weber, Marcia A. Bockbrader, Gaurav Sharma
2020 Cell  
Paralyzed muscles can be reanimated following spinal cord injury (SCI) using a brain-computer interface (BCI) to enhance motor function alone. Importantly, the sense of touch is a key component of motor function. Here, we demonstrate that a human participant with a clinically complete SCI can use a BCI to simultaneously reanimate both motor function and the sense of touch, leveraging residual touch signaling from his own hand. In the primary motor cortex (M1), residual subperceptual hand touch
more » ... ignals are simultaneously demultiplexed from ongoing efferent motor intention, enabling intracortically controlled closed-loop sensory feedback. Using the closed-loop demultiplexing BCI almost fully restored the ability to detect object touch and significantly improved several sensorimotor functions. Afferent grip-intensity levels are also decoded from M1, enabling grip reanimation regulated by touch signaling. These results demonstrate that subperceptual neural signals can be decoded from the cortex and transformed into conscious perception, significantly augmenting function.
doi:10.1016/j.cell.2020.03.054 pmid:32330415 fatcat:bg3z7s4njfhibk6u5hvmomn2pm