Support Vector Machine Algorithm for Automatically Identifying Depositional Microfacies Using Well Logs

Dahai Wang, Jun Peng, Qian Yu, Yuanyuan Chen, Hanghang Yu
2019 Sustainability  
Depositional microfacies identification plays a key role in the exploration and development of oil and gas reservoirs. Conventionally, depositional microfacies are manually identified by geologists based on the observation of core samples. This conventional method for identifying depositional microfacies is time-consuming, and only the depositional microfacies in a few wells can be identified due to the limited core samples in these wells. In this study, the support vector machine (SVM)
more » ... m is proposed to identify depositional microfacies automatically using well logs. The application of SVM includes the following steps: First, the depositional microfacies are determined manually in several wells with core samples. Then, the training sets used in the SVM algorithm are extracted from the well logs. Finally, a quantitative discrimination model based on the SVM algorithm is established to realize the classification of depositional microfacies. Field application shows that this innovative and constructive solution can be effectively used in uncored wells to identify depositional microfacies with a rate of accuracy approaching 84%. It overcomes the limitation of the conventional manual method which greatly contributes to the cost-saving of core analysis and improves the sustainable profitability of oil and gas exploration.
doi:10.3390/su11071919 fatcat:34kyd6e77ncgdcyjol47e3oft4