Effects of Ni nanoparticles, MWCNT, and MWCNT/Ni on the power production and the wastewater treatment of a microbial fuel cell

Ramesh Aryal, Diana Beltran, Jia Liu
2019 Figshare  
Ni nanoparticles (NPs), multi-walled carbon nanotubes (MWCNT), and MWCNT/Ni were compared for the first time in enhancing power production and wastewater treatment efficiency of a two-chambered microbial fuel cell (MFC). The cathode electrode – a 3D carbon fiber brush – was modified for the first time using different amounts of the three types of nanomaterials. Closed-circuit voltage of the cell was recorded, and chemical oxygen demand (COD) of the anode solution was measured with time. The
more » ... with time. The overall performance of the MFC was enhanced in the following order: MWCNT > MWCNT/Ni > Ni. The power production increased by 7.9 times to 1.2 W/m3 with 1.5 mg/cm2 of MWCNT. The power density further increased to 1.9 W/m3, and the COD maximally decreased by 163.3 mg/L in a 24-h duration with 3.0 mg/cm2 of MWCNT. The internal resistance decreased maximally by 65.2% to 0.4 kΩ with 1.5 mg/cm2 of MWCNT/Ni, and further to 0.3 kΩ with 3.0 mg/cm2 of MWCNT/Ni. Electrochemical impedance spectroscopy (EIS) was conducted to assess the effects of different nanomaterials on the impedance of the MFC. Charge transfer resistance of the cathode was maximally reduced by ~85% to 0.3 Ω with 3.0 mg/cm2 of MWCNT/Ni. Considering price, stability, and performance, MWCNT is the most practical material for cathode modification. This study is meaningful for sustainable wastewater treatment by enhancing energy production from wastewater treatment process through applying low-cost nanomaterials on the cathode of the MFC.
doi:10.6084/m9.figshare.9928856 fatcat:b4brvh3ay5dtbhxahyqsa7moc4