The Infrared Properties of Hickson Compact Groups

Kelsey E. Johnson, John E. Hibbard, Sarah C. Gallagher, Jane C. Charlton, Ann E. Hornschemeier, Thomas H. Jarrett, Amy E. Reines
2007 Astronomical Journal  
Compact groups of galaxies provide a unique environment to study the mechanisms by which star formation occurs amid continuous gravitational encounters. We present 2MASS (JHK), Spitzer IRAC (3.5-8 micron) and MIPS (24 micron) observations of a sample of twelve Hickson Compact Groups (HCGs 2, 7, 16, 19, 22, 31, 42, 48, 59, 61, 62, and 90) that includes a total of 45 galaxies. The near-infrared colors of the sample galaxies are largely consistent with being dominated by slightly reddened normal
more » ... y reddened normal stellar populations. Galaxies that have the most significant PAH and/or hot dust emission (as inferred from excess 8 micron flux) also tend to have larger amounts of extinction and/or K-band excess and stronger 24 micron emission, all of which suggest ongoing star formation activity. We separate the twelve HCGs in our sample into three types based on the ratio of the group HI mass to dynamical mass. We find evidence that galaxies in the most gas-rich groups tend to be the most actively star forming. Galaxies in the most gas-poor groups tend to be tightly clustered around a narrow range in colors consistent with the integrated light from a normal stellar population. We interpret these trends as indicating that galaxies in gas-rich groups experience star formation and/or nuclear actively until their neutral gas consumed, stripped, or ionized. The galaxies in this sample exhibit a "gap" between gas-rich and gas-poor groups in infrared color space that is sparsely populated and not seen in the Spitzer First Look Survey sample. This gap may suggest a rapid evolution of galaxy properties in response to dynamical effects. These results suggest that the global properties of the groups and the local properties of the galaxies are connected.
doi:10.1086/520921 fatcat:2sjlf5rfova2jhanf4sgusrmj4