Feature Engineering for Second Language Acquisition Modeling

Guanliang Chen, Claudia Hauff, Geert-Jan Houben
2018 Proceedings of the Thirteenth Workshop on Innovative Use of NLP for Building Educational Applications  
Knowledge tracing serves as a keystone in delivering personalized education. However, few works attempted to model students' knowledge state in the setting of Second Language Acquisition. The Duolingo Shared Task on Second Language Acquisition Modeling (Settles et al., 2018) provides students' trace data that we extensively analyze and engineer features from for the task of predicting whether a student will correctly solve a vocabulary exercise. Our analyses of students' learning traces reveal
more » ... ning traces reveal that factors like exercise format and engagement impact their exercise performance to a large extent. Overall, we extracted 23 different features as input to a Gradient Tree Boosting framework, which resulted in an AUC score of between 0.80 and 0.82 on the official test set.
doi:10.18653/v1/w18-0543 dblp:conf/bea/ChenHH18 fatcat:xjfj2yy5nne2xe5khxms7r3d3i