A Framework for the Recognition of High-Level Surgical Tasks From Video Images for Cataract Surgeries

F. Lalys, L. Riffaud, D. Bouget, P. Jannin
2012 IEEE Transactions on Biomedical Engineering  
The need for a better integration of the new generation of Computer-Assisted-Surgical (CAS) systems has been recently emphasized. One necessity to achieve this objective is to retrieve data from the Operating Room (OR) with different sensors, then to derive models from these data. Recently, the use of videos from cameras in the OR has demonstrated its efficiency. In this paper, we propose a framework to assist in the development of systems for the automatic recognition of high level surgical
more » ... ks using microscope videos analysis. We validated its use on cataract procedures. The idea is to combine state-of-the-art computer vision techniques with time series analysis. The first step of the framework consisted in the definition of several visual cues for extracting semantic information, therefore characterizing each frame of the video. Five different pieces of image-based classifiers were therefore implemented. A step of pupil segmentation was also applied for dedicated visual cue detection. Time series classification algorithms were then applied to model time-varying data. Dynamic Time Warping (DTW) and Hidden Markov Models (HMM) were tested. This association combined the advantages of all methods for better understanding of the problem. The framework was finally validated through various studies. Six binary visual cues were chosen along with 12 phases to detect, obtaining accuracies of 94%. Index Terms-Surgical workflow, surgical microscope, feature extraction, video analysis, surgical process model, DTW, HMM
doi:10.1109/tbme.2011.2181168 pmid:22203700 pmcid:PMC3432023 fatcat:g2ttzqmioncptcntaj2vmfqi4m