Spatial Pattern of Forest Carbon Storage in the Vertical and Horizontal Directions Based on HJ-CCD Remote Sensing Imagery

Kaisheng Luo
2019 Remote Sensing  
To provide a comprehensive understanding of the spatial distribution of forest carbon reserves, this study explores carbon storage and its spatial pattern in the horizontal and vertical directions on a provincial scale using HJ-CCD remote sensing imagery. Results show that carbon storage in the forests of Hubei Province was 784.46 Tg. In the horizontal direction, Enshi Prefecture contributed the most, with a contribution rate of 22.01%, followed by Yichang (18.74%), Shiyan (15.21%), and
more » ... (10.61%). Coniferous forests contributed the most to the total carbon reserves of the forests, with a contribution rate of 71.34%, followed by broadleaf forests (25.36%), and mixed forests (3.30%). In the vertical direction, the environmental difference in the vertical direction of the forest ecosystem led to the obvious stratification of carbon storage in the vertical direction, that is: soil layer > tree canopy layer > shrub layer > litter layer. The soil layer had the largest carbon storage, contributing 76.63%, followed by the tree canopy layer (19.05%), shrub layer (2.39%), and litter layer (1.93%). The different contributing layers of coniferous, broadleaf, and mixed forests to carbon storage followed the same order: soil layer > tree canopy layer > shrub layer > litter layer.
doi:10.3390/rs11070788 fatcat:ldvdg3ityrgirhrj2cqru2ezau