Dense Prediction on Sequences with Time-Dilated Convolutions for Speech Recognition [article]

Tom Sercu, Vaibhava Goel
2016 arXiv   pre-print
In computer vision pixelwise dense prediction is the task of predicting a label for each pixel in the image. Convolutional neural networks achieve good performance on this task, while being computationally efficient. In this paper we carry these ideas over to the problem of assigning a sequence of labels to a set of speech frames, a task commonly known as framewise classification. We show that dense prediction view of framewise classification offers several advantages and insights, including
more » ... putational efficiency and the ability to apply batch normalization. When doing dense prediction we pay specific attention to strided pooling in time and introduce an asymmetric dilated convolution, called time-dilated convolution, that allows for efficient and elegant implementation of pooling in time. We show results using time-dilated convolutions in a very deep VGG-style CNN with batch normalization on the Hub5 Switchboard-2000 benchmark task. With a big n-gram language model, we achieve 7.7% WER which is the best single model single-pass performance reported so far.
arXiv:1611.09288v2 fatcat:pkkkbkkudzbfpgbp2btvl5xm34