Metabolic engineering of saccharomyces cerevisiae towards the biotransformation of D-galacturonic acid to L-galactonate [thesis]

Simon Harth
In Europe, the sugar refinery is largely based on sugar beets. This route for obtaining household sugar results in a large amount of biomass waste, consisting mainly of the insoluble beet resi-dues, e.g., cell wall fragments. To a vast moiety this debris consists of the polymer pectin (up to 20% in the dry total solids). The structure of pectin is based on a backbone of D-galacturonic acid units (GalA), but also contains various other sugar monomers, predominantly L-arabinose, D-galactose,
more » ... mnose and D-xylose. The amount of GalA adds up to a moiety of up to 70% with-in this sugar cocktail. So far, this debris is only fed to cattle or simply burnt. In nature, pectin is a common substrate for various organisms. The degradation of pectin-rich biomass is often per-formed by filamentous fungi like Hypocrea jecorina (also known as Trichoderma reesei) and As-pergillus niger, which evolved pectinases to degrade the pectin backbone and pathways to con-sume the monomer GalA as a sole carbon source. The fungal catabolism of pectin residues starts with the reduction of GalA to L-galactonate (GalOA) by a GalA-reductase. Even though filamen-tous fungi are native hosts of the GalA-catabolism and certain engineering approaches have al-ready been demonstrated, this class of organisms remains challenging with regard to bioreactor cultivation and tedious genetic accessibility. In contrast, the yeast S. cerevisiae is well known in fermentation processes and easily modified by a versatile set of genetic tools. So far, first ap-proaches have already been conducted to transfer the GalA utilization pathways into S. cerevisiae, but these approaches indicated limitations regarding GalA-uptake and redox cofac-tor replenishment due to the relatively high oxidative state of GalA compared to other sugars like glucose and galactose. Furthermore, the generally strongly increased demand for redox co-factors must be met by GalA reduction by finding new cofactor sources or redirecting reactions of the core metabolism. This work aimed at the production of GalOA, which is the first intermediate of the fungal GalA catabolism. This compound shows an interesting range of potential applications, for instance as a food and cosmetic additive. To overcome the oxidized character of GalA, the presence of a more reduced co-substrate as a redox donor and as a carbon and energy source was required. To further enhance the reduction of GalA, modulation of the redox-cofactor supply and enzyme engineering were performed.
doi:10.21248/gups.71078 fatcat:m3cv4na2r5d4bfpwzi3ggkqb6e