A parallel Monte Carlo code for planar and SPECT imaging: implementation, verification and applications in 131I SPECT

Yuni K Dewaraja, Michael Ljungberg, Amitava Majumdar, Abhijit Bose, Kenneth F Koral
2002 Computer Methods and Programs in Biomedicine  
This paper reports the implementation of the SIMIND Monte Carlo code on an IBM SP2 distributed memory parallel computer. Basic aspects of running Monte Carlo particle transport calculations on parallel architectures are described. Our parallelization is based on equally partitioning photons among the processors and uses the Message Passing Interface (MPI) library for interprocessor communication and the Scalable Parallel Random Number Generator (SPRNG) to generate uncorrelated random number
more » ... ams. These parallelization techniques are also applicable to other distributed memory architectures. A linear increase in computing speed with the number of processors is demonstrated for up to 32 processors. This speed-up is especially significant in Single Photon Emission Computed Tomography (SPECT) simulations involving higher energy photon emitters, where explicit modeling of the phantom and collimator is required. For 131 I, the accuracy of the parallel code is demonstrated by comparing simulated and experimental SPECT images from a heart/thorax phantom. Clinically realistic SPECT simulations using the voxel-man phantom are carried out to assess scatter and attenuation correction.
doi:10.1016/s0169-2607(01)00121-3 pmid:11809318 pmcid:PMC2831216 fatcat:b5iylndyy5hqjma5j6rtuxmzam