A self-normalized approach to confidence interval construction in time series [article]

Xiaofeng Shao
2010 arXiv   pre-print
We propose a new method to construct confidence intervals for quantities that are associated with a stationary time series, which avoids direct estimation of the asymptotic variances. Unlike the existing tuning-parameter-dependent approaches, our method has the attractive convenience of being free of choosing any user-chosen number or smoothing parameter. The interval is constructed on the basis of an asymptotically distribution-free self-normalized statistic, in which the normalizing matrix is
more » ... computed using recursive estimates. Under mild conditions, we establish the theoretical validity of our method for a broad class of statistics that are functionals of the empirical distribution of fixed or growing dimension. From a practical point of view, our method is conceptually simple, easy to implement and can be readily used by the practitioner. Monte-Carlo simulations are conducted to compare the finite sample performance of the new method with those delivered by the normal approximation and the block bootstrap approach.
arXiv:1005.2137v1 fatcat:fuqigfzeevebxonecdf7skl7si