Influences of Temperature and Precipitation on Historical and Future Snowpack Variability over the Northern Hemisphere in the Second Generation Canadian Earth System Model

Reinel Sospedra-Alfonso, William J. Merryfield
2017 Journal of Climate  
This study examines the changing roles of temperature and precipitation on snowpack variability in the Northern Hemisphere for Second Generation Canadian Earth System Model (CanESM2) historical and future (2006-2100) climate simulations. The strength of the linear relationship between monthly snow water equivalent (SWE) in January-April and precipitation P or temperature T predictors is found to be a sigmoidal function of the mean temperature over the snow season up to the indicated month. For
more » ... dicated month. For P predictors, the strength of this relationship increases for colder snow seasons, whereas for T predictors it increases for warmer snow seasons. These behaviors are largely explained by the daily temperature percentiles below freezing during the snow accumulation period. It is found that there is a threshold temperature (25618C, depending on month in the snow season and largely independent of emission scenario), representing a crossover point below which snow seasons are sufficiently cold that P is the primary driver of snowpack amount and above which T is the primary driver. This isotherm allows one to delineate the snowclimate regions and elevation zones in which snow-cover amounts are more vulnerable to a warming climate. As climate projections indicate that seasonal isotherms shift northward and toward higher elevations, regions where snowpack amount is mainly driven by precipitation recede, whereas temperature-sensitive snowcovered areas extend to higher latitudes and/or elevations, with resulting impacts on ecosystems and society.
doi:10.1175/jcli-d-16-0612.1 fatcat:yxllfw2bp5fg5jjl6dohhx23aa