A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2020; you can also visit the original URL.
The file type is application/pdf
.
Reconstructing Subsets of Reals
1999
Electronic Journal of Combinatorics
We consider the problem of reconstructing a set of real numbers up to translation from the multiset of its subsets of fixed size, given up to translation. This is impossible in general: for instance almost all subsets of $\mathbb{Z}$ contain infinitely many translates of every finite subset of $\mathbb{Z}$. We therefore restrict our attention to subsets of $\mathbb{R}$ which are locally finite; those which contain only finitely many translates of any given finite set of size at least 2. We
doi:10.37236/1452
fatcat:wvvj4hzaxzfdhdjyqe4vr25ryy