Evaluation of the Advanced Hurricane WRF Data Assimilation System for the 2009 Atlantic Hurricane Season

Steven M. Cavallo, Ryan D. Torn, Chris Snyder, Christopher Davis, Wei Wang, James Done
2013 Monthly Weather Review  
Real-time analyses and forecasts using an ensemble Kalman filter (EnKF) and the Advanced Hurricane Weather Research and Forecasting Model (AHW) are evaluated from the 2009 North Atlantic hurricane season. This data assimilation system involved cycling observations that included conventional in situ data, tropical cyclone (TC) position, and minimum SLP and synoptic dropsondes each 6 h using a 96-member ensemble on a 36-km domain for three months. Similar to past studies, observation assimilation
more » ... systematically reduces the TC position and minimum SLP errors, except for strong TCs, which are characterized by large biases due to grid resolution. At 48 different initialization times, an AHW forecast on 12-, 4-, and 1.33-km grids is produced with initial conditions drawn from a single analysis member. Whereas TC track analyses and forecasts exhibit a pronounced northward bias, intensity forecast errors are similar to (lower than) the NWS Hurricane Weather Research Model (HWRF) and GFDL forecasts for forecast lead times #60 h (.60 h), with the largest track errors associated with the weakest systems, such as Tropical Storm (TS) Erika. Several shortcomings of the data assimilation system are addressed through postseason sensitivity tests, including using the maximum 800-hPa circulation to identify the TC position during assimilation and turning off the quality control for the TC minimum SLP observation when the initial intensity is far too weak. In addition, the improved forecast of TS Erika relative to HWRF is shown to be related to having initial conditions that are more representative of a sheared TC and not using a cumulus parameterization.
doi:10.1175/mwr-d-12-00139.1 fatcat:pyosns4df5e23ovtuy3kbu53fm