Numerical and experimental study on flexible blade for tilt-body drones

Fazila Mohd-Zawawi, Sebastien Prothin, Peng Lv, Emmanuel Benard, Joseph Morlier, Jean-Marc Moschetta
unpublished
Cet article présente une évaluation des techniques de conception d'un proprotor (rotor demontrant des capacités de vol stationnaire et en mode hélice) à la fois pour des performances propulsives et pour le comportement structural d'un proprotor souple en composite pour les drones. Un modèle numérique a été développé en utilisant une combinaison du modèle aérodynamique basé sur Blade Element Momentum Theory (BEMT), et le modèle d'élément fini d'une poutre anisotrope. Cette stratégie permet le
more » ... plage entre les caractéristiques aérodynamiques et structurales dune pale de proprotors souples. Le modèle numérique a ensuite été validé par des mesures de la performance statique et la reconstruction de la forme par Laser Distance Sensor (LDS). Abstract : This paper is concerned with the evaluation of design techniques, both for the propulsive performance and for the structural behavior of a composite flexible proprotor. A numerical model was developed using a combination of aerodynamic model based on Blade Element Momentum Theory (BEMT), and structural model based on anisotropic beam finite element, in order to evaluate the coupled structural and the aerodynamic characteristics of the deformable proprotor blade. The numerical model was then validated by means of static performance measurements and shape reconstruction from Laser Distance Sensor (LDS) outputs. From the validation results of both aerodynamic and structural model, it can be concluded that the numerical approach developed by the authors is valid as a reliable tool for designing and analyzing the drone proprotor made of composite material. The proposed experiment technique is also capable of providing a predictive and reliable data in blade geometry and performance for rotor modes.
fatcat:vl7qwykdbnfydcmlkg645n4cha