A High-Order Convex Splitting Method for a Non-Additive Cahn–Hilliard Energy Functional

Hyun Geun Lee, Jaemin Shin, June-Yub Lee
2019 Mathematics  
Various Cahn–Hilliard (CH) energy functionals have been introduced to model phase separation in multi-component system. Mathematically consistent models have highly nonlinear terms linked together, thus it is not well-known how to split this type of energy. In this paper, we propose a new convex splitting and a constrained Convex Splitting (cCS) scheme based on the splitting. We show analytically that the cCS scheme is mass conserving and satisfies the partition of unity constraint at the next
more » ... ime level. It is uniquely solvable and energy stable. Furthermore, we combine the convex splitting with the specially designed implicit–explicit Runge–Kutta method to develop a high-order (up to third-order) cCS scheme for the multi-component CH system. We also show analytically that the high-order cCS scheme is unconditionally energy stable. Numerical experiments with ternary and quaternary systems are presented, demonstrating the accuracy, energy stability, and capability of the proposed high-order cCS scheme.
doi:10.3390/math7121242 fatcat:csaqufls2rdz3awef7ivgr57qq