Challenges and Recommendations for Equitable Use of Aerial Tools for Mangrove Research

Astrid J. Hsu, Sara Pruckner, Erin V. Satterthwaite, Lauren V. Weatherdon, Keiran Hadley, Elizabeth Thanh Tam Nguyen
2021 Frontiers in Marine Science  
As the use of aerial tools such as unmanned aerial vehicles (UAVs) for mangrove monitoring gains in popularity, understanding who leads this research and where is critical for expanding efficient monitoring methods and achieving international commitments to sustainable development, technology transfer and reduced inequality. Between 2000 and 2019, mangrove research using aerial tools was largely conducted in and led by institutions in higher income countries, despite High-income countries
more » ... ting for only 9% of global mangrove coverage. Of studies where the country of the lead institution differed from that of the study site, only 38% of the studies included local co-authors. These results echo historical patterns of research conducted by researchers from higher income countries on biodiversity concentrated in lower income countries, frequently with limited involvement of local scientists—known as "helicopter research." The disconnect between where mangroves are located and where aerial research is conducted may result from barriers such as government restrictions, limited financial and technical resources, language barriers hindering UAV deployment, or hampered findability of local research. Our findings suggest that expertise for aerial surveys currently lies in "High-income, Annex II" and "Upper-middle-income, Non-Annex" countries, and both groups could invest time and resources in building local, long-term technological capacity in Upper-middle, Lower-middle and Low-income countries. We identify strategic partnerships to expand aerial tools for mangrove research that also address commitments under the United Nations Framework Convention on Climate Change and potential international collaborations under the framework proposed by the UN Decade of Ocean Science for Sustainable Development.
doi:10.3389/fmars.2021.643784 fatcat:j52fq2x75vf55cab7k4rytlxdu