Downloaded by UNIVERSITY OF ILLINOIS on November 3, 2014 | http://arc.aiaa.org | DOI: 10.2514/1.G000218

JOURNAL OF GUIDANCE, CONTROL, AND DYNAMICS
Vol. 37, No. 6, November—December 2014

Model Predictive Control of Swarms of Spacecraft
Using Sequential Convex Programming

Daniel Morgan* and Soon-Jo Chung?

University of Illinois at Urbana—Champaign, Urbana, Illinois 61801

and

Fred Y. Hadaegh#
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109

DOI: 10.2514/1.G000218

This paper presents a decentralized, model predictive control algorithm for the optimal guidance and reconfigu-
ration of swarms of spacecraft composed of hundreds to thousands of agents with limited capabilities. In previous
work, J,-invariant orbits have been found to provide collision-free motion for hundreds of orbits in a low Earth orbit.
This paper develops real-time optimal control algorithms for the swarm reconfiguration that involve transferring
from one J,-invariant orbit to another while avoiding collisions and minimizing fuel. The proposed model predictive
control-sequential convex programming algorithm uses sequential convex programming to solve a series of
approximate path planning problems until the solution converges. By updating the optimal trajectories during the
reconfiguration, the model predictive control algorithm results in decentralized computations and communication
between neighboring spacecraft only. Additionally, model predictive control reduces the horizon of the convex
optimizations, which reduces the run time of the algorithm. Multiple time steps, time-varying collision constraints,
and communication requirements are developed to guarantee stability, feasibility, and robustness of the model
predictive control-sequential convex programming algorithm.

Nomenclature

a = magnitude of the acceleration vector

Aax = maximum possible acceleration of
a spacecraft

a* = acceleration magnitude that minimizes
the distance between two spacecraft

h = magnitude of the specific angular
momentum of orbit

A = set of spacecraft that are to be avoided

i = orbit inclination

Js = second harmonic coefficient of Earth

K = set of spacecraft that have not converged

k = timestep k

ko = 3J,uR?%,2.633 x 10'° km?/s?

ko = time step at the start of the model predictive
control horizon

L = size of trustregion for convex optimization

£=(x,y,2)7 = relative position vector in the local-vertical/

. local-horizontal coordinate system

= (x,52)7 = relative velocity vector in the local-vertical/
local-horizontal coordinate system

M = final iteration of sequential convex

programming

Presented as Paper 2012-4583 at the AIAA/AAS Astrodynamics Specialist
Conference, Minneapolis, MN, 13-16 August 2012; received 14 August
2013; revision received 24 December 2013; accepted for publication 5
January 2014; published online 22 April 2014. Copyright © 2013 by the
American Institute of Aeronautics and Astronautics, Inc. The U.S.
Government has a royalty-free license to exercise all rights under the
copyright claimed herein for Governmental purposes. All other rights are
reserved by the copyright owner. Copies of this paper may be made for
personal or internal use, on condition that the copier pay the $10.00 per-copy
fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers,
MA 01923; include the code 1533-3884/14 and $10.00 in correspondence
with the CCC.

*Graduate Research Assistant, Department of Aerospace Engineering;
morgan29 @illinois.edu. Student Member AIAA.

fAssistant Professor, Department of Aerospace Engineering; sjchung@
illinois.edu. Senior Member AIAA.

*Senior Research Scientist and Technical Fellow; fred.y.hadaegh@jpl.nasa
.gov. Fellow AIAA.

1725

(X.7,2)

x= ("N
X

Xactual

(x,y,2)
(X.9,2)

Yy

(ay, ay, a;)

B

At

number of spacecraft

orbital element vector

minimum collision-free distance enforced
at the discrete points in the optimization
minimum collision-free distance achieved
in the continuous trajectories (R o < R.q1)
maximum distance a spacecraft can
communicate (R.omm > Reol)

radius of the Earth

geocentric distance

final time step

number of time steps in the model
predictive control horizon

time

final time

time required to compute the optimization

maximum allowable magnitude of the
control (acceleration) vector

control (acceleration) vector in
local-vertical/local-horizontal frame
maximum allowable magnitude of
the relative velocity vector

radial velocity

Earth-centered inertial coordinate system

state vector in local-vertical/local-
horizontal frame

nominal state vector

actual state vector

coordinate values in the local-vertical/
local-horizontal coordinate system

unit vectors of the local-vertical/
local-horizontal coordinate system
function defining the J,-invariant orbit
for a given relative position and
reference orbit

angular acceleration of coordinate system
about (x, y, 7) axes

rate at which the size of the trust region
decreases

length of time step

http://dx.doi.org/10.2514/1.G000218

Downloaded by UNIVERSITY OF ILLINOIS on November 3, 2014 | http://arc.aiaa.org | DOI: 10.2514/1.G000218

1726 MORGAN, CHUNG, AND HADAEGH

€ = tolerance of sequential convex
programming convergence

0 = argument of latitude

u = gravitational constant

X = trust region for convex optimization

Q = right ascension of the ascending node

® = (0, ,, w,)T = vector of rotation rates of the
local-vertical/local-horizontal frame

-1, = £, norm of a vector, p € [1, 0]

Subscripts

f = final condition (7 is equal to 7y)

i = spacecraft i

J = spacecraft j

m = iteration m

0 = initial condition (¢ is equal to 0)

I. Introduction

PACECRAFT formation flying has been a major area of research

over the past decades. Recently, the idea of formation flying has
been extended to create swarms of spacecraft [1,2] that contain a large
number (hundreds to thousands) of femtosatellites (100-gram-class
spacecraft), also known as femtosats. Due to their small size, the
femtosats have limited sensing, actuation, and computation capabil-
ities, which require the guidance and control algorithms of the swarm
to be both fuel and computationally efficient.

J,-invariant orbits [3] have been shown to maintain the swarm
shape and provide collision-free motion for hundreds of orbits. These
orbits are very effective at swarm keeping once the swarm is in a
desired formation. However, another important requirement for
swarm missions is the guidance and control of the swarm reconfigu-
ration. The goal of this paper is to develop a fuel and computationally
efficient guidance and control algorithm for the reconfiguration of a
swarm of spacecraft located in low Earth orbit (LEO). This algorithm
will transfer the spacecraft from one set of J,-invariant passive relative
orbits (PROs) to another. In addition to being fuel and computationally
efficient, the algorithm should provide collision-free motion in the
highly nonlinear dynamics of relative spacecraft motion in the
presence of J,, which is the dominant perturbation in LEO.

Previous work in spacecraft formation flying [4-12] and
multivehicle control research [13—-16] has presented multivehicle
guidance and control methods. However, the previous work in
formation flying usually deals with a small number of spacecraft: a
dozen at the most. Additionally, the spacecraft are much larger than
femtosats with greater capabilities. The swarm guidance algorithms
must be different from previous research because they need to
simultaneously address the large number of agents, the modest
capabilities of each individual agent, and the complex dynamic envi-
ronment. Specifically, the large number of spacecraft makes collision
avoidance a major challenge. Also, the limited computational capa-
bilities of each agent require that the swarm reconfiguration
algorithm is very simple so that it can be run onboard the femtosats in
real time.

A purely centralized algorithm can find fuel-efficient trajectories
for reconfiguration but scales very poorly with the number of
spacecraft [17]. On the other hand, a decentralized algorithm can
generate trajectories with computational efficiency but will need a
reactive collision-avoidance algorithm [18], where the spacecraft do
not preplan to avoid collisions but rather perform maneuvers once a
potential collision is detected, which will reduce the fuel efficiency of
the reconfiguration. Depending on the number of spacecraft and the
reconfigured state of the swarm, a decentralized approach can be
implemented without much loss in fuel efficiency [18]. However,
with hundreds to thousands of spacecraft, there is a larger potential
for collisions, which will reduce the fuel efficiency of a decentralized
algorithm.

Many methods have been developed for solving nonlinear optimal
control problems. Due to the complicated nonlinear dynamics of
swarms of spacecraft, indirect methods become very difficult to use

because they require the derivation of the first-order necessary
conditions for optimality [19,20]. Therefore, many optimal control
problems are solved using direct methods, which parameterize the
control space, and sometimes the state space, reducing the problem
to a nonlinear optimization. Pseudospectral methods [21] have
been used for trajectory optimization, but these methods solve a
centralized problem that scales poorly with the number of spacecraft
due to the coupling of spacecraft in the collision-avoidance require-
ments. Mixed integer linear programming can be used to enforce
collision-avoidance constraints and has been implemented in
real time [22] as well as used for preplanning trajectories [23,24].
However, these algorithms also scale poorly as the number of
spacecraft increases due to the increase in integer variables caused by
the increase in the number of collision constraints.

Recently, convex optimization [25] has been used in multivehicle
trajectory design, and it has been shown that it can be efficiently
solved to achieve a global optimum by state-of-the-art interior point
methods. Convex optimization has been used to implement a
receding horizon controller for a convex problem [26]. Additionally,
convex optimization has been used to find collision-free trajectories
for a formation reconfiguration [27] and robotic motion planning
[28]. However, convexifying the collision constraints results in an
overly conservative approximation of the collision-avoidance region.
In the present paper, sequential convex programming (SCP) [29] is
applied to the swarm reconfiguration. SCP uses multiple iterations to
ensure that the convex approximations of nonconvex constraints are
accurate resulting in more fuel-efficient trajectories. Additionally, the
SCP algorithms can be written using freely available software, such
as CVX [30,31], to convert the convex programs to semidefinite
programs (SDPs) or second-order-cone programs (SOCPs). These
programs can then be solved by SDP or SOCP solvers, such as
SDPT3 [32,33] (MATLAB) or MOSEK [34] (C/C++ or MATLAB).

By solving the swarm reconfiguration as an optimization problem,
the entire trajectory is generated for each spacecraft at the initial time.
In our prior work [35], it is shown that these trajectories can be
computed onboard the femtosats. However, calculating the entire
trajectory, with collision avoidance, for each spacecraft at the initial
time requires each spacecraft to have all-to-all communication
capabilities. To relax this assumption, the swarm reconfiguration
is formulated as a decentralized model predictive control (MPC),
or receding horizon control, problem using SCP to solve the
optimizations.

MPC has been a major research area for over a decade [36,37]. In
recent years, the original MPC problem has been modified to create
robust MPC [38—40] and fast MPC [41,42]. Additionally, MPC has
been used in applications similar to swarm guidance, such as vehicle
maneuvering [38], formation flying [43], and spacecraft landing [44].
In all of these variations and applications of MPC, the basic idea
remains the same. MPC computes the control input by optimizing
over a finite-horizon subject to control and state constraints with the
current state as the initial state of the optimization. Then, the control
input is applied to the system until a new computation is completed
giving an updated control input.

The goal of this paper is to develop a model predictive control
implementation, which provides fuel-optimal collision-free motion
for the reconfiguration of swarms of spacecraft and can be imple-
mented on a femtosat with limited computation and communication
capabilities. The MPC—SCP algorithm presented in this paper will
build upon prior work by Morgan et al. on J,-invariant orbits [3] and
the current authors on optimal swarm trajectories [35]. The J,-
invariant conditions from prior work by Morgan et al. [3] are used as
the boundary conditions for the swarm reconfiguration. The SCP
algorithm [35] will be used to compute the optimizations used in
the MPC implementation, which results in a fully decentralized
reconfiguration algorithm. The algorithms developed in this paper
provide real-time collision-free trajectories for a large number of
spacecraft (in hundreds or thousands). Additionally, our algorithms
are equally applicable to formation flying of a smaller number (3—10)
of larger spacecraft.

The novelty of the MPC implementation using SCP (MPC-SCP)
is that it decentralizes the computations and communications

Downloaded by UNIVERSITY OF ILLINOIS on November 3, 2014 | http://arc.aiaa.org | DOI: 10.2514/1.G000218

MORGAN, CHUNG, AND HADAEGH 1727

required for swarm reconfiguration with collision avoidance. This
allows the algorithm to handle hundreds to thousands of spacecraft in
real time with calculations performed onboard the femtosats.
Additionally, the MPC-SCP implementation offers several other
advantages. First, the limited horizon of the MPC-SCP implementa-
tion greatly reduces the size of the SCP problem and, therefore, the
run time. Additionally, the limited horizon allows the algorithm to
include collision-avoidance constraints for only the neighboring
spacecraft. This decentralizes the communication requirements of the
SCP algorithm. Finally, by running the SCP algorithm multiple
times, any differences between the desired and actual trajectories,
which can be caused by errors or uncertainties, are accounted for
when computing the future trajectories. This provides some
robustness to the MPC—SCP implementation that is not present when
the SCP algorithm is run only once at the initial time.

The paper is organized as follows. In Sec. II, the swarm recon-
figuration is discussed and the SCP method is described. In Sec. I1I,
the problem of converting to convex form is discussed and SCP is
applied to the problem. In Sec. IV.A, the collision-avoidance con-
straints are discussed and the decentralized algorithm is presented.
In the remainder of Sec. IV, the SCP problem is implemented using
MPC and the effectiveness of this algorithm is investigated, along
with the stability, feasibility, and robustness. In Sec. V, the results of
simulations and the effectiveness of each algorithm are discussed.

II. Guidance of Swarms of Spacecraft

In this section, the swarm reconfiguration is presented as a
continuous, finite-horizon optimal control problem. The swarm
reconfiguration involves the transfer of hundreds to thousands of
spacecraft from one J,-invariant PRO [3] to another while avoiding
collisions between spacecraft and minimizing the total fuel used
during the transfer. To properly define the variables and constraints
involved in the optimal control problem, two coordinate systems
must be defined. First, the Earth-centered inertial (ECI) coordinate
system is used to locate the chief spacecraft or a virtual reference
point called the chief orbit (see Fig. 1a). This coordinate system is

inertially fixed and located at the center of the Earth. The X direction
points toward the vernal equinox, the Z direction points toward the

North Pole, and the ¥ direction is perpendicular to the other two and
completes the right-handed coordinate system. The second coordi-
nate system is the local—vertical/local-horizonal (LVLH) coordinate
system. The LVLH frame is centered at the chief spacecraft or
chief orbit. Figure 1a shows the LVLH frame with respect to a chief
spacecraft. The X, or radial, direction is always aligned with the
position vector and points away from the Earth; the z, or crosstrack,
direction is aligned with the angular momentum vector, and the y, or
alongtrack, direction completes the right-handed coordinate system.
The LVLH frame is a rotating frame with a rotation rate of w, about
the radial axis and w, about the crosstrack axis. The relative state
of the deputy spacecraft in the LVLH frame is expressed

byx;=[x; vy z & ¥ 4L

a) ECI (X, ¥, Z) and LVLH frames (%, §, %)
Fig.1 Visualization of the relative coordinate system and a spacecraft swarm reconfiguration [3].

The optimal control problem for swarm reconfiguration is written
using the LVLH coordinates and dynamics. The equations of motion
for spacecraft in the LVLH frame (¢; = (x;, ;.2 j)T) are [45]

where the function g(¢;, ee) € R3 is defined in the Appendix, and the

matrix S(@) € R is defined as S(w)Z = @ X . Additionally, the
orbital elements of the chief (reference) orbit e = (r, v, h, i, Q,)"
are geocentric distance r, radial velocity v,, magnitude of the specific
angular momentum #, inclination i, right ascension of the ascending
node Q, and argument of latitude 6. Note that the angular rates of the
LVLH frame @ (7) are also determined by ce() (see the Appendix). In
this paper, it is assumed that these values are known to each spacecraft
by some standard estimation process that might use communicated or
measured information about the actual location of the chief spacecraft
and propagation of the following equation of motion:

® = fenier(0€(1), Ucnier) 2

where the right-hand side of this equation is defined in the Appendix.
Note that Eqs. (1-2) are hierarchically combined; Eq. (1) does not
affect the reference motion given in Eq. (2). Hence, the reference
orbital elements are assumed to be known values in the optimal
control problem. Therefore, the dynamics constraints are given by
Eq. (1) with known parameters given by Eq. (2).

The objective of the optimal swarm reconfiguration is to minimize
the £;-norm of the control input. The £;-norm of the control input is
equivalent to the total fuel used during the transfer [46]. Therefore,
we can define the swarm reconfiguration as follows:

Problem 1: The nonlinear optimal control problem is

. Ny .
. min N;A ||u_,-(t)||pdz subject to Eq.(1) 3)

and

lu;Oll, € Unax V2E€[0 1], j=1,....N (4

IClx; (1) = x;(D]ll2 > Rt ¥ 1 €0, 1],
i>j, j=1..N-1)

xj(0)=x]’0, xj(tf)zxjj]=1, ...,.N (6)
where C =[I3,3 03] and x; = (Z7,¢")". Equation (4) repre-
sents the limitation on the magnitude of the control vector, with U,
being the maximum allowable control magnitude; Eq. (§) is the
collision-avoidance constraint, with R, being the minimum

b) Spacecraft swarm reconfiguration

Downloaded by UNIVERSITY OF ILLINOIS on November 3, 2014 | http://arc.aiaa.org | DOI: 10.2514/1.G000218

1728 MORGAN, CHUNG, AND HADAEGH

allowable distance between two spacecraft; and Eq. (6) contains the
initial state constraint and the final state constraint. Although any
reachable initial and terminal conditions can be used for Eq. (6), the
simulations in Sec. V use the J,-invariant conditions developed in
prior work by Morgan et al. [3]. These J,-invariant relative orbits
have been shown to provide collision-free motion of hundreds of
spacecraft for hundreds of orbits. Therefore, these orbits are chosen
as the parking orbits for the spacecraft before and after the
reconfiguration. Given the relative position £;(z), 7 € {0, 7}, and the
chief orbit ce(7), the velocity vector that yields J,-invariant PRO is
given by some function ¢ (1) = V(Z(r), (7)) (see [3] for details).

Remark I (p-norm): The norms used in Egs. (3) and (4), || - ||, and
| - Il ;> respectively, are dependent on the thruster architecture used on
the spacecraft. Usually, p, g € {1,2, oo}, where p and ¢ can be the
same or different. For a spacecraft with a single thruster, the values for
p and g will both be 2. However, the femtosats considered in this
paper are assumed to have thrusters in each direction (X, y,) with a
single fuel tank. Each thruster has a limit on the amount of thrust that
can be produced, which requires that ¢ = oo in Eq. (4). Additionally,
the lifetime of each femtosat is limited by the fuel remaining. Since
each thruster requires fuel from the same tank, the goal is to minimize
the sum of the magnitudes of the control components, i.e., the 1-
norm. Therefore, p = 1in Eq. (3). Throughout this paper, the 1-norm
will be used for the objective function and the co-norm will be used
for the control constraint. However, it is important to note that the
convex optimizations developed in the following sections are valid
for p,q € {1,2, 0}.

Itis important to note that the objective function and the constraints
of Egs. (4) and (6) already satisfy the requirements for a convex
programming problem. Therefore, only the dynamics [Eq. (1)] and
the collision-avoidance constraints [Eq. (3)] need to be converted in
order to make Problem 1 convex.

III. Sequential Convex Programming

In this section, conversion to SCP is presented. This is done by
converting both the dynamics constraints and the collision-avoidance
constraints [Egs. (1) and (5), respectively] into an acceptable form for
convex programming. For the dynamics, this involves linearizing
Eq. (1) and discretizing Problem 1. This results in a finite number
of linear equality constraints, which are acceptable in a convex
programming problem. The collision-avoidance constraints in
Eq. (5) are converted to convex inequality constraints so that they are
in convex form as well. Once the problem is converted to convex
form, a SCP algorithm is applied to solve the modified version of the
swarm reconfiguration.

A. Linearization and Discretization of Dynamics

To rewrite the dynamics in Eq. (1) as a constraint that can be used in
a convex programming problem, these equations must first be
linearized. This is necessary because the rules of convex pro-
gramming state that equality constraints must be affine. Equation (1)
can be rewritten as followsV j =1, ..., N:

x; = f(x;,) + Bu;)
where B = [0343 I35]7. Linearizing Eq. (7) yields
X; = A(X;, e)x; + Bu; + c(x;, ce) ®)

where X; is the nominal trajectory about which the equations are
linearized. The method for determining these nominal trajectories
will be described in Sec. IIL.C. Additionally, A(x;, ce) and c(x;, ce)
are

03><3 I3
Al @) = _%‘ -25() |
'l ©)

@) = |y e
Jj - —g(z,”j,oe)—i-a—ik/xj
Hence, Eq. (8) is a fully controllable system.

The next step in the process of converting Eq. (1) into a constraint
that can be used in convex programming is to convert the ordinary
differential equation in Eq. (8) to a finite number of algebraic
constraints. To do this, the problem is discretized using a zero-order-
hold approach such that

u;(t) = u k], t €[ty 1), k=0,....,T—1 (10)
where ty =TAt; ty=0; tp=1t7 and At=t —1t; for
k=0, ..., T — 1. This method of discretization reduces Eq. (8) to

k=0,...T—1, j=1....N (11)

where x;[k] = x;(;), u;[k] = u; (), ce[k] = ce(#;), and

A/[k] — e,A(.??,(r,().oe(tk))At7 Bl[k] _ /At A (). x(n)T g dr,
’ . 0

At _
c;jlk] =/0 eA(xf(’k)'Oe(’*‘))fc(ij(tk),oe(tk))dr (12)

Now that the nonlinear continuous-time equations of motion from
Eq. (1) have been rewritten as linear, finite-dimensional constraints in
Eq. (11), they can be used in a convex programming problem. The
constraints from Eqs. (4-6) can be written in discretized form as

lwjklll, < Upax k=0,....T—1, j=1,...,N (13)

[[Cxj[k] = xi (kD2 = Reop k=0,....T,
i>j j=1... . N—-1 (14)

x][()] :xj"o, x]

[T]=x;; j=1...,N (15)
Note that the only constraint that does not satisfy the requirements of
convex programming is Eq. (14). This constraint will be modified in
the next section so that it can be used in a convex programming
problem.

B. Convexification of Collision Avoidance Constraints

The final step in converting the swarm reconfiguration into a
convex programming problem is converting the collision-avoidance
constraints to convex constraints. Since the collision-avoidance
constraints in their current form are concave, the best convex approxi-
mations will be affine constraints. In other words, the sphere that
defines the forbidden region is approximated by a plane that is
tangent to the sphere and perpendicular to the line segment
connecting the nominal position X; of the spacecraft and the object.
This idea is shown in two dimensions using a line and a circle
in Fig. 2.

Figure 2a shows the prohibited zone for the initial collision-
avoidance constraint. Figure 2b demonstrates the convexification of
the constraint from Fig. 2a. Based on the positions of the spacecraftin
the previous iteration, a line (or plane in the three-dimensional
version) is defined to be tangent to the old prohibited zone and
perpendicular to the line segment connecting the spacecraft. This line
defines the new prohibited zone. As can be seen in Fig. 2b, the new
prohibited zone includes the old prohibited zone so collision
avoidance is still guaranteed using this convexification method.

Downloaded by UNIVERSITY OF ILLINOIS on November 3, 2014 | http://arc.aiaa.org | DOI: 10.2514/1.G000218

MORGAN, CHUNG, AND HADAEGH 1729

Collision-Free Zone

Spacecraft: j

Prohibited Zone

Spacecraft: i

a) Nonconvex prohibited zone

Collision-Free Zone

Prohibited Zone

Spacecraft: i h

b) Convex approximation of prohibited zone

Fig.2 Convexification of the two-dimensional (2-D) collision-avoidance constraint.

Figure 3 shows the collision-free zone for a spacecraft surrounded
by multiple neighbors. When multiple neighboring spacecraft (center
dot) are in the vicinity of spacecraft j (outer area dots), the collision-
free zone will be the intersection of the half-spaces that define
the collision-free zones between each neighbor and spacecraft j. This
results in a convex polytope around the nominal position of
spacecraft j in which it is guaranteed to be collision-free based on the
position of the neighboring spacecraft.

Proposition 1 (convexification of collision avoidance constraint):
A sufficient condition for the collision-avoidance constraints to hold
from Eq. (14) is

(;[k] = X, [kDT CTC(x;[k] = x;[k]) > Rt || C(x[k] — X, [K]) |,
k=0,....T. i>j, j=1..N-1 (16)

Proof: To show sufficiency, it is assumed that the above condition
is satisfied. The following steps are valid for all i, j, k:
(@ [K] =X (kD" CT C K] = x;[K]) 2 Ret| C (& [K] = %, (kD) |,
C [kl =X (kD |, | Cx[k] = x;[kD) ||, cO8 p > Reoy || C(x [k] — X, [KD I
C(x;[k]—xi[kD |, c08 p > Reor
1C(x; [kl =x: (kD |, 2 [|C(xj[K] = x:[kD) |, c08 b = Rl

Collision-Free Zone

Spacecraft:

Fig. 3 Collision-free zone for a spacecraft with five neighbors using
affine collision-avoidance constraints.

This reestablishes Eq. (14) and proves sufficiency. The nominal
trajectories from the previous iteration of x; and x; are X; and X;,
respectively, and ¢ is the angle between the two vectors. These
nominal values are assumed to be known and are not variables in
the optimization. Therefore, the collision-avoidance constraints in
Eq. (16) are affine and in a form that can be used in a convex
programming problem. O

Remark 2 (nominal trajectories): The nominal trajectory x;
represents an initial guess for the actual trajectory x; and is used to
convexify the collision-avoidance constraint. The closer the nominal
trajectory is to the actual trajectory, the more accurate the convex
program will be. The nominal trajectory plays an important role in the
iterative method developed in Sec. IIL.C, where it is further defined.

C. Sequential Convex Programming Method

Now that all of the constraints in Problem 1 have been written in
convex programming form, Problem 1 can be written as the following
convex programming problem:

Problem 2 (convex program):

N T-1

_min NZZHuj[k]||lAtsubjectto{(11),(13),(15),(16)} a7

u,]:1 =0

where Problem 1 has been discretized, and the constraints of Egs. (1)
and (5) have been approximated by Egs. (11) and (16), respectively.

The approximations used to get the dynamics and collision-
avoidance constraints into their convex forms [Eqgs. (11) and (16)]
require a nominal state x;[k] for each spacecraft at each time step.
Additionally, the nominal vectors must be close to the actual state
vectors in order for the solution to the convex programming problem
to be valid. To ensure that the nominal vectors are good estimates of
the actual state vectors, SCP is used. SCP is a method for solving
nonconvex optimizations using convex programming [29]. To use
SCP, the nonconvex problem is approximated by a convex problem,
as has been done in Secs. III.A and IIL.B. Then, the convex problem is
solved using an iterative method. In the first iteration, an initial guess
is provided for the nominal vector for the dynamics, but in the
following iterations, the solution to the previous iteration is used as
the nominal vector, i.e., X;[k] = x;,,_[k], V k for iteration m. This
process continues until the following condition is satisfied:

% k] = % (Kl <€V j K 18)
To enforce the collision-avoidance constraints, each spacecraft

communicates its own nominal trajectory to the other spacecraft. This
requirement will be relaxed in Sec. IV.

Downloaded by UNIVERSITY OF ILLINOIS on November 3, 2014 | http://arc.aiaa.org | DOI: 10.2514/1.G000218

1730 MORGAN, CHUNG, AND HADAEGH

Space.cra.f't:j e Spacecraft: j
Iteration: m ,\/00 lteration:m .~
Spacecraft: j () . Coﬂis\iO”‘FFEe Zone Spacecraft: j
Iteration: m-1 Prohibited zone fteration: m+1
Spacecraft: j i T
Iteration: m-1 -~ ’
} ’ Rcol ;
DY s S Prohibi
S Spacecraft: i Spacecraft: i ‘ p O (?‘“\E“f“fc"‘,';‘i"‘blt‘egzqne
N - Iteration: m+1 el ollision-Free Zone
S Iteration: m-1 Spacecraft:i Spacecraft: i "

Spacecraft: i
Iteration: m

a) Collision-free zone for iteration m

Iteration:m |teration: m-1

b) Collision-free zone for iteration m+1

Fig. 4 Evolution of the 2-D collision-avoidance constraint.

One of the main advantages of using SCP compared to simply
solving the convex programming problem is that the resulting
solution is not as dependent on the initial guess. Because of the
way that the collision-avoidance constraint must be convexified, the
prohibited zone for each collision is a half-space, which is overly
conservative. With convex programming, this will prevent the space-
craft from passing through certain areas that are, in fact, safe. This can
potentially lead to nonoptimal trajectories if a poor initial guess is
provided. In SCP, the iterations allow the spacecraft to move into an
area that was prohibited in the initial convex programming problem.
This is illustrated in Fig. 4. In the iteration m 4 1, shown in Fig. 4b,
the spacecraft move into areas that were originally prohibited in
iteration m, shown in Fig. 4a. This idea allows SCP to achieve better
trajectories than a single iteration of convex programming.

In each iteration, a trust region is defined for the convex problem.
The region represents the range of state vectors over which the
linearization provides accurate approximations. It is defined V j as

Xj,Lm = {xj|||xj<m[k] - xj.m—l[k]”oc < Lmv v k} (19)

where L, is the size of the trust region during iteration m.
Additionally, the trust region in Eq. (19) can be used to ensure that the
SCP algorithm converges. To ensure convergence, the size of the trust
region is updated as follows:

Lm+l = ﬂLm (20)

where € (0, 1) is a parameter that determines the worst-case rate of
convergence, and x; ,[k] denotes the relative state vector of the jth
spacecraft, at the kth time step, after the mth iteration of the convex
program.

If the run time of each iteration f;,, and the total allowable run time
t.un Of the algorithm are known, the maximum allowable number of
iterations M can be determined by the following equation:

M= V—J 1)

Titer

Where ., is dependent on the computer and optimization software
used, and t,,, is further defined in Proposition 5 in Sec. IV. This
maximum number of iterations M can then be used to determine the
required value of . From Eq. (20),

Ly =pML, (22)

To guarantee convergence by iteration M, L,, must be less than e
from Eq. (18). Substituting Eq. (22) for L, and solving for f yields

(2
)

where ¢ is the tolerance of SCP convergence, and L, is the initial trust
region size.

The SCP method is effective for formations containing tens of
spacecraft but does not scale well because the number of collision-
avoidance constraints increases quadratically with the number of
spacecraft. Additionally, while this method reduces the problem to
convex form in Problem 2, which is much simpler than the original
nonconvex form in Problem 1, it is still a centralized problem where
all of the spacecraft’s trajectories are solved for at the same time. Due
to the limited size of the spacecraft in a swarm, it is unlikely that any
of them will have the computational ability to solve the entire swarm
reconfiguration. Therefore, decentralizing the swarm reconfiguration
will make it much more feasible.

IV. Model Predictive Control Using Sequential Convex
Programming
A. Decentralized Sequential Convex Programming Method

As mentioned in Sec. III, even in convex form, the centralized
swarm reconfiguration algorithm still scales poorly because of the
number of collision-avoidance constraints. Therefore, the problem
must be decentralized so that it can be run using the limited
computational capabilities of spacecraft in the swarm. The collision-
avoidance constraints are the only constraints involving more than
one spacecraft. Therefore, the goal of this section is to rewrite the
collision constraints in such a way that each spacecraft can compute
its own trajectory yet the entire swarm is still collision free.

The first step to decentralizing the SCP algorithm is noticing
that many of the spacecraft do not come close to each other at any
time during the reconfiguration. For this reason, it is not necessary
to include the collision-avoidance constraints for every pair of
spacecraft in the SCP algorithm. By defining a second collision
distance, R, S0 that Rg,;. > R, and only checking for collisions
for spacecraft pairs that violated this distance in a previous iteration of
the SCP, the number of constraints in each iteration of Problem 2 can
be greatly reduced. Another property of SCP that can be used to
reduce the computational complexity is the fact that, as the number of
iterations increases, the difference between x;,[k] and x; ,,_[k]
decreases. In other words, the nominal state vectors become better
estimates of the actual state vectors as the number of iterations
increases. This fact can be used to decentralize the optimizations by
assuming that all other spacecraft are fixed objects, located at their
positions from the preceding iteration, which must be avoided. Using
this assumption, the optimization can be rewritten as follows:

Problem 3 (decentralized convex program):

> lluj{k]ll, At subject to Egs. (11). (13), (15)

N T-
= =0

wjj=1,..., N 4 1

~
~

(24)

Downloaded by UNIVERSITY OF ILLINOIS on November 3, 2014 | http://arc.aiaa.org | DOI: 10.2514/1.G000218

MORGAN, CHUNG, AND HADAEGH 1731

and

(;[k] = &, [kDT CTC(x;[k] — X;[k]) > Req|| C(x;[k] — X, [kD) |,
k=0,....T, i€Z; j=1,...,N—I (25)

where the nominal trajectory is calculated using x;[k] = x; ,,,_;[k] and

T, ={i|3k €0, ..., T, such that | C(E[k] — %KD,
< Rsafe and i <]} (26)

The decentralized SCP method is described in Method 1. The
nominal values are not updated until after every spacecraft has
completed its computation, as seen in line 15 of Method 1. This
allows all of the spacecraft to run the SCP algorithm simultaneously,
which greatly reduces the total elapsed time. Unfortunately, this can
cause the SCP algorithm to have trouble converging when trying to
avoid collisions. This occurs because two spacecraft that are trying to
avoid each other are now simultaneously updating their trajectories.
Because neither spacecraft knows where the other will be, they may
choose trajectories that are collision free based on the other
spacecraft’s previous trajectory but are not collision free based on the
new trajectories. This situation is shown in Fig. 5.

Figure 5a shows spacecraft i (open circle on the right) moving to a
position (solid circle to the right of center) that is safe based on the
previous location of spacecraft j (open circle on the left). However,
spacecraft j has updated its position (solid circle in center), and the
spacecraft are within each other’s collision radii. Figure 5b shows the
following iteration where the spacecraft are overly conservative
because both spacecraft think the other will be closer to them based
on the previous trajectory. It is possible for the spacecraft to oscillate
back and forth in this manner, which prevents the SCP algorithm from
converging.

By adding the constraint i < j to Eq. (26), only one of the
spacecraft will try to avoid the other one. Using these modifications,
the SCP method is shown in Method 1.

Remark 3 (spacecraft ordering): By forcing one spacecraft to avoid
the other rather than allowing cooperative avoidance, the trajectories
can potentially be farther from the optimal than one derived in a
centralized method. However, the total run time of the algorithm
is greatly reduced. Additionally, the numbering of the spacecraft
is arbitrary so they can be numbered in a way that minimizes the
disadvantages of using the decentralized method. For example,
ordering the spacecraft based on their efficiency or amount of fuel

remaining will ensure that the spacecraft avoiding the collision is
better suited to do so. In this case, the decrease in optimality may not
be as significant.

Because the run time is now on the order of a time step or two, the
algorithm can be run using MPC by updating the future control
commands based on new state information that includes unmodeled
disturbances and other errors. This can provide some robustness
improvements compared to running the algorithm only once at the
beginning.

B. Model Predictive Control Method

To describe the MPC algorithm, Problem 4 and Problem 5 are
defined. Problem 4 is defined so that the horizon for the optimization
Ty does not reach the terminal time 7 for the reconfiguration. For this
reason, a terminal cost is added to the objective [second term in
Eq. (27)] to estimate the cost of completing the reconfiguration from
the state and time at the end of the optimization horizon. Problem 4 is
used in the MPC algorithm when the horizon of the optimization does
not reach the terminal time of the reconfiguration. Problem 5 is very
similar to Problem 3, with the only difference being the starting time.
Problem 5 is used in the MPC algorithm when the horizon of the
optimization goes beyond the terminal time of the reconfiguration. In
both Problem 4 and Problem 5, the spacecraft are assumed to have
limited communication ranges. Therefore, they can only communi-
cate with the other spacecraft that are within their communication
ranges. Problem 4 and Problem 5 are expressed as follows:

Problem 4 (convex optimization used in MPC-SCP if
ko+Ty<T):

ko+Ty—1 T-1

min Y lufk]l, A+ Y llwglk]l, A Vji=1.....N
Y =k, k=ko+ Ty

(27
subject to
xjlk + 1] = Aj[klx;[k] + B;[k]u;[k] + c;[k],
k=ky....T—1, j=1,....N (28)
(;[K] = x,[k])T CT C (k] = x,[k]) = Ry jKIIIC ;K] = x,[kD)l,
kzko,...,k0+TH, {l,]}lEN,
Nj = {i|i < j’ ”xj[kO] _xi[k0]||2 < Rcomm} (29)

Method 1 SCP method for decentralized problem

L xj[k] := 06y1, V j. K

2: x_/,o[k] := the solution to Problem 3 (Problem 4 or 5 when called from Method 2) excluding Eq. (25) (Eq. (29) or (34) when using Problem 4 or 5, respectively),

vk

3ix[k] 1= x; o[kl V . Kk
4:K:={1,...,N}
tmi=1

6: while K # @ do
7:for all j € K do

W

8: x; ,,[k] := the solution to Problem 3 (problem 4 or 5 when called from Method 2), V &

9: end for

10: for all j € K do

Il xj.m [k] = x_/'Jn—l[k]s vk
12: end for

13: K:={1,...,N}

14: for all j do

15: x;[k] := x; (K], V k

17: Remove j from /C
18: end if
19: end for

200 m:=m+1

21: end while

222M :=m—1

23: x}[k] is the approximate solution to Problem 1

16: if |x;,,[K] = x;,,1 [K]| , < &V kand | C(x;,,[k] — x;,,[k])|, > Reot, V kV i € N then

“In the SCP-only (no MPC) algorithm, N'; = {i|i # j}. NV is further defined in Sec. IV.B.

Downloaded by UNIVERSITY OF ILLINOIS on November 3, 2014 | http://arc.aiaa.org | DOI: 10.2514/1.G000218

1732 MORGAN, CHUNG, AND HADAEGH

Collision Radii

O

spacecraft: i
iteration: m-1

spacecraft: j
iteration: m-1 spacecraft: i

iteration: m

spacecraft: j
iteration: m

a) Update from iteration m-1 to iteration m: collision

spacecraft: j
iteration: m+1

Collision Radii

spacecraft: i
iteration: m+1

spacecraft: i
iteration: m

spacecraft: j
iteration: m

b) Update from iteration m to iteration m+1: overly conservative

Fig. 5 Example of two spacecraft that have difficulty converging. This problem is solved by adding the second constraint in Eq. (26).

DX, < Vaax k=koo ... T, j=1,...,N (30)

||uj[k]||°°SUmux kao,...,T—], jzl,,N (31)

x_/'[kO] :xj,actuah xj[T] :xj,f J = 1, ,N (32)
where D = [03,3 I343]; At; and At, are the time step size before
and after the end of the horizon, respectively; and R; ;[k] > R, is the
collision radius for spacecraft i and j at time k when perturbations are
considered. The importance of having multiple time step sizes and
time-varying collision-avoidance distances will be discussed in
Sec. IV.E.

Problem 5 (convex optimization used in MPC-SCP if T — Ty <
ko < T)

T-1
n;i_nZHuj[k]HlAtl Vj=1,....N (33)
! k=ko

subject to Eqs. (28), (30), (31), (32), and

(@[k] — X [KD" CTC(x[k] — Xi[k]) > Ry j[k]| CGe K] — %, (kDI
k=koT, {i,jli€N;,
Nj = {l|l < j’ ”xj[k()] _xi[k()]||2 < Rcomm} (34)

The MPC implementation of the SCP algorithm is performed by
reducing the horizon of the SCP problem and then solving this
problem repeatedly throughout the reconfiguration. Initially, the SCP
algorithm is run for the optimal trajectory up to a finite horizon 7T'y.
As the spacecraft approaches this horizon in real time, the SCP
algorithm is rerun from the current time k, and position x; ,cqa Up to
the new horizon (ky + T'). Itis important to note that k, is the current
time at the beginning of each MPC iteration and increases with time.
In Eq. (32), X; scruar is the real-time position and velocity of the
spacecraft when the MPC algorithm is run. This value represents the
initial condition of the MPC algorithm. This process is repeated until
the spacecraft reaches the desired position x; ; at the final time 7. This
process is shown in more detail in Method 2.

The SCP algorithm used to solve the optimizations in the MPC
algorithms was given by Method 1. The SCP algorithm is written very
generally, and it is assumed that the optimization problem to be
solved, the time range of the optimization, and the pairs of spacecraft
that can communicate are specified by the MPC algorithm.

The result of the MPC—SCP implementation is a fully decentral-
ized optimal guidance algorithm with improved computation times
as well as better robustness when sensor and actuator errors are
included, as will be shown in Sec. IV.C. The decentralization of the
swarm guidance algorithm greatly reduces the communication
and computation requirements of the femtosats. Additionally, the
increased robustness properties of this algorithm will reduce the
fuel requirements for the femtosats. The benefits of the MPC

implementation with respect to robustness and fuel efficiency are
shown in Fig. 6. Figure 6a shows how an initial actuator or sensor
error can cause the actual final position (large circle, upper right) to
have a significant error with respect to the desired final position (large
circle, bottom right) if the SCP algorithm is only run once. However,
the MPC implementation in Fig. 6b can reduce this error by updating
the desired trajectory based on the actual position and velocity
(%} actwal[K]) at various points (small circles) throughout the reconfigu-
ration. In addition to reducing final position errors, the MPC
implementation reduces the computation, communication, and fuel
requirements, which are especially important for femtosats due to
their very limited volume and mass.

C. Sensor and Actuator Uncertainties

A major benefit of the MPC—SCP algorithm is the robustness to
sensor and actuator uncertainties. Before analyzing the stability
and feasibility of the MPC-SCP algorithm, in Secs. IV.D and IV.E,
respectively, this subsection introduces the sensor and actuator
uncertainties and their effects on the spacecraft’s trajectories.

Assumption 1: The linearization and discretization errors of the
convexification process are negligible compared to the errors in the
control actuation and state measurements.

Remark 4 (negligible errors): The linearization errors are negligi-
ble because the nominal trajectory about which the linearization
occurs (x; = x; ,_;) and the actual trajectory (x;,,) are within ¢, as
given by line 16 of Method 1. Additionally, the discretization error
is caused by using a zero-order hold on time-varying dynamics.
However, the relative spacecraft dynamics do not change much over
the length of a single time step, so using constant dynamics
(A;, B}, c;) does not introduce much error.

Assumption 2: The errors in the state measurement at time k
and control actuation at all times k are Ax;[kg] = X;[ko] — x;[ko]
and Auw;[k] = 4 ;[k] — u;[k], respectively. These errors satisfy the
following conditions:

[CAx;[Kll, <& IDAXKII, <&, Auylk]ll, <&0. Yk
(35)

Method 2 MPC-SCP (main result)

likg=0

2: while kg < T — Ty, do

3: Solve Problem 4 using SCP (Method 1)

4: x;[k] = state solution to Problem 4,V j, k = ky... ko + Ty
5. u;[k] = control solution to Problem 4,V j, k = ko ... kg + T — 1
6: Update k to current time

7: end while

8: while ky < T do

9: Solve Problem 5 using SCP (Method 1)

10: x;[k] = state solution to Problem 5,V j, k = ky...T

11: u;[k] = control solution to Problem 5,V j, k = k... T — 1
12: Update k to current time

13: end while

Downloaded by UNIVERSITY OF ILLINOIS on November 3, 2014 | http://arc.aiaa.org | DOI: 10.2514/1.G000218

MORGAN, CHUNG, AND HADAEGH 1733

Actual Trajectory

Initial Position Desired Final Position

a) Trajectory from running the SCP algorithm at the
initial time only

Initial Position

Update Positions
P Actual Trajectory

(Solid Line)

~ > 1 Actual Final Position

- ~

- -

- -~
- \
7 DN /
Desired Trajectories %‘—?

(Broken Lines)

Desired Final Position

b) Trajectory from running the MPC implementation of
the SCP algorithm

Fig. 6 Convexification of the 2-D collision-avoidance constraint.

Proposition 2 (bound on the perturbed trajectory): Under
Assumptions 1 and 2, the error (d;(k, n)) in the position of spacecraft
accumulated between time steps k and k 4+ n can be bounded as
follows:

n—1 n—1
ld;(k.n)|l, < HAM+ﬂ 4| [Tak+s| &
= UL $=0 UR
- n—I
Z [Ta [k+sB-[k+l]H &, = 1d;(k,n) (36)
1=0 I s=[+1 U

where d;(k,n) = Cx;[k + n], the propagated error between the
perturbed state (X;[]) and the original state is X ;[k] = X;[k] — x;[«],
and

n n—1
[[2s1 = zinlzin - 11.... zl2)zin)z[0). [2zls) =
s=0 s=n

Zy Zyp Z,
Zoxs = s Ze =
Zy Zy Z,

1 Zexsllur = 6(Z11), | Zexsllur = 6(Z12), 1Zoxslly = 6(Z))

Proof: Define X ;[k] as the perturbed state of spacecraft j at time k.
The dynamics for X;[k] given Assumption 1 can be written as

X[k + 1] = A;[k](x;[k] + Ax;[k]) 4+ B;[K](u;[k] + Au[k]) + c;[k]

(37
Subtracting Eq. (11) from Eq. (37) yields
X[k + 1] = Aj[k]Ax;[k] + Bj[k]Au;[k] (38)
Expanding this equation for n time steps yields
Xk +n] =]_[Ajlk + s]A
n—1 n—l
+ 3 [T Ak + s1B,[k + DAu;fk + 1] (39)

1=0 s=I+1

Considering only the position components of the state and taking the
norm of both sides results in

ld;(k,n)|l, < |CAx;[K]|l,
UL
| DAx;[K]|l,
n—1 n—I
+3 | TT Atk +sIBjlk + 0| Ak, 40)
=0 I s=[+1

U

Applying the conditions in Assumption 2 establishes Eq. (36). O

Proposition 2 calculates an upper bound (d;(k, 1)) on the drift of
the perturbed trajectory of spacecraft j between time steps k and
k + n. This allows a terminal ball to be constructed so that the
perturbed terminal position lies inside the ball.

D. Stability

The stability of an MPC algorithm is dependent on the terminal
cost function [second term in Eq. (27)]. In Method 2 (MPC-SCP), the
terminal cost function evaluates the fuel required to go from x; ,cyal[K]
at kg + Ty to x;, at T without considering collision-avoidance
constraints during this part of the trajectory. There are two reasons not
to enforce the collision-avoidance constraints when calculating the
terminal cost function. First, the collision-avoidance constraints
add complexity to the problem so removing them greatly reduces the
time required for the computation. Second, the spacecraft can only
communicate with other spacecraft within a certain distance of them.

The concept of Method 2 (MPC-SCP) is shown in Fig. 7. This
figure shows the various stages of the MPC algorithm. The first
stage is shown by the solid line in Fig. 7. This represents the actual
trajectory that the spacecraft has traversed, and it occurs between
k=0 and k = ky. The current time, and the initial time in the
optimization, is represented by k = kj. The next stage occurs
between k = ky and k = ky + Ty, and itis shown as a dashed line in
the figure. This represents the predicted trajectory, and collision
avoidance is considered during this time period. The final stage is
illustrated by the dotted line and extends from k = ky + Ty to
k = T. During this time, the predicted trajectory does not take into

Predicted Trajectory with

Collision Avoidance Predicted Trajectory Without

(Problem 4) Collision Avoidance
Actual Trajectory 1. (Problem 4)
\ - End of Horizon ~"*--... /
(k=kq+T},)
Current Position

(k=ko)

Initial Position Desired Final Position
(k=0) (k=T)
Fig. 7 Illustration of the optimization horizon used in the MPC
algorithms.

Downloaded by UNIVERSITY OF ILLINOIS on November 3, 2014 | http://arc.aiaa.org | DOI: 10.2514/1.G000218

1734 MORGAN, CHUNG, AND HADAEGH

account collision avoidance. It is important to note that, if the second
stage (dashed line) extends beyond the final time, the final stage does
not exist, and Problem 5 should be used instead of Problem 4.

Method 2 (MPC—-SCP) uses the solution to Problem 4 or Problem 5
depending on whether or not the horizon of the optimization reaches
the final time. In either case, the final state is bound from Eq. (32).
Therefore, the trajectory is guaranteed to converge to the desired final
set as long as the optimizations described in Problems 4 and 5 are
feasible. The feasibility of the optimizations is discussed Sec. IV.E.

When the uncertainties described in Sec. IV.C are considered, the
perturbed trajectories must still converge to the desired terminal
positions.

Theorem 3 (stability of the perturbed trajectory): If the last MPC
update occurs at time 7 —n and Assumptions 1 and 2 hold, the
perturbed trajectory will reach a terminal position such that

IC@E,[T]—x;), < d;(T —n.n) (41)

Proof: The MPC-SCP algorithm’s terminal constraint [Eq. (32)]
ensures that the unperturbed trajectory reaches the desired terminal
state. The rest of the proof follows from Proposition 2 with
k=T-n. (]

E. Feasibility

For the trajectories in Method 2 (MPC-SCP) to converge, the
optimizations must be feasible. Infeasibility of the optimization can
result for two reasons: The collision-avoidance constraints cannot all
be satisfied or the terminal constraint (x;[T] = x;,) cannot be
satisfied without violating the limit on the velocity and/or control
vectors. The collision-avoidance infeasibility arises because collision
avoidance is only considered up to the horizon of the optimization
and other spacecraft can only be detected if they are within the
communication radius R.,,,. Therefore, collisions that occur after
the optimization horizon (ky + T'y) or with spacecraft outside of the
communication radius R, are not considered until a later time
step. For this reason, several conditions are introduced to ensure that
collision avoidance is guaranteed.

To guarantee feasibility, an artificial constraint [Eq. (30)] is
imposed on the problem in order to bound the distance that each
spacecraft can move during each time step. The maximum velocity
Vmax can be approximated from the relative dynamics in Eq. (28).
Assuming that the original optimization problem described by
Problem 2 is feasible, i.e., the initial and terminal constraints can be
satisfied without violating the collision-avoidance constraints, the
following conditions ensure that Method 2 (MPC—-SCP) is feasible:

Proposition 4 (detectable collisions): All spacecraft that can cause
collisions within the current horizon are able to be detected if

Rcomm 2 2VmaxTHAl‘l + Rcol (42)

Proof: The length of the horizon is the number of time steps Ty
multiplied by the length of each time step At,. Additionally, the
maximum relative velocity between two spacecraft is 2V ...
Therefore, the maximum change in the relative distance between two
spacecraft results in 2V, Ty At;. Any pair of spacecraft can change
their relative distance by this amount before the end of the MPC
horizon. Therefore, this distance must be less than the difference

Fig. 8 Illustration of a pair of spacecraft that do not have sufficient
communication radii to guarantee detectable collisions.

between the communication radius R.,,, and the collision radius
R.,- This establishes Eq. (42). Od

This condition guarantees that any spacecraft that could potentially
cause a collision before the end of the MPC horizon is detected, and
therefore considered in the optimization. An illustration of a pair of
spacecraft that violate this condition is shown in Fig. 8.

Proposition 5 (computational feasibility): The new control
sequence can be computed before the previous horizon is reached if

tan < TyAL (43)

Proof: Since collision avoidance is not enforced after the end of the
MPC horizon, a new control sequence must be computed before the
current control sequence reaches the end of the horizon. Otherwise,
the control sequence will not necessarily avoid collisions. Therefore,
the computation time of each step of the MPC algorithm ¢,,,, must be
less than the length of the MPC horizon (TyAt,). This results in
Eq. 43). O

Propositions 4 and 5 ensure the feasibility of Method 2 (MPC—
SCP). Since the optimizations performed by this algorithm are
feasible, the collision-avoidance constraints are satisfied and there
are no collisions at the discrete time steps. However, there is still a
possibility that collisions occur in between time steps when the
collision-avoidance constraints are not enforced. The following
theorem addresses this issue.

Theorem 6 (collision avoidance between time steps): If two
spacecraft are collision free during two consecutive time steps k and
k + 1,and Egs. (44) and (45) are satisfied, then the two spacecraft are
collision free in the interval ¢ € [kAt,, (k + 1)At;]:

RCO
Aty < _Vmalx (44)

2\ 2 on
R *AH AR? . .
\/(Rco] + an') + (Vi A1y)? =505 if 0% < min {22‘;“1“ . amax}
Rcol i — A 2 ARY? (45)
(RCOI + amjl_tl) + (VmaxAtl)2 - (amde[l) else if Amax < _Zthv'lﬂX

Ié 1+Vmafo1
co

2

else

Downloaded by UNIVERSITY OF ILLINOIS on November 3, 2014 | http://arc.aiaa.org | DOI: 10.2514/1.G000218

MORGAN, CHUNG, AND HADAEGH 1735

where
2 (R, V2
“=A\akag 6
1 1

and R, is the minimum allowable distance between every pair of
spacecraft in continuous time.

Proof: The MPC—-SCP algorithm (Method 2) guarantees that the
trajectories are collision free at the discrete time steps. However, the
trajectories must also be collision free in between time steps in order
to guarantee collision-free trajectories. The first step to ensuring that
collisions do not occur in between time steps is to establish a
condition which prevents two spacecraft from passing through each
other. Two spacecratt can move by a relative distance of 2V, At; in
one time step. This distance must be less than twice the collision
radius R, to prevent the spacecraft from passing through each other.
This establishes Eq. (44).

Now that the spacecraft cannot pass through each other, the
minimum possible relative distance between the spacecraft is
established for a given (V ., @max)> Where V.. is the maximum
allowable velocity and a,, is the maximum allowable acceleration,
which includes acceleration due to both the control and the dynamics.
The discretization method uses a constant acceleration in between
time steps. Consider this scenario from the reference frame centered
at spacecraft j, as shown in Fig. 9. In this figure, the subscript i|j
denotes the location of spacecraft i with respectto j, where i € A/ j-In
the worst-case scenario, the distance between the two spacecraft is
R, at both time steps, and both the relative velocity and acceleration
vectors are in the plane defined by spacecraft j and the initial and final
positions of spacecraft i. This scenario is depicted in Fig. 9, and the
distances in Eqs. (47)—(50) are defined in this figure.

_ Since the acceleration vector is constant, the minimum distance
R, occurs when the problem is symmetric, as shown in Fig. 9:

L = 2V . COS pAL @7
L\2
b= gol - (E) (48)
2
d = V. sin AL — a% (49)
Rco] =b-d (50)

Fig. 9 Illustration of the worst-case scenario for collisions in between
time steps.

where L is length of the segment connecting the position of spacecraft
i relative to spacecraft j at time steps k and k + 1, b is the minimum
distance between this segment and spacecraft j, d is the distance
between the line segment measured by L and the point of closest
approach of spacecraft i relative to spacecraft j, and ¢ is the angle
between the initial velocity vector and the line segment measured by
L. Since the closest distance occurs at At /2 due to symmetry, the
velocity in the direction of the acceleration vector must be zero at this
time:

2V max Sin ¢ = alAty (&28)

This equation holds for a <2V, /At,. Substituting Eq. (51) into
Eq. (49) results in

_alAn

d
4

(52)

Additionally, solving Eq. (51) for sin ¢ and substituting it into the
identity cos® ¢p = 1 — sin® ¢ yields

2Al‘2
cosz¢=1—a 21 (53)
4vmax
Combining Eqs. (47), (48), (50), (52), and (53) results in
- 2At At?
Rcol = \/Rgol - (VmaxAtl)2 + = L a4 L (54)

To find the closest approach, Eq. (54) is minimized with respect to a.
Taking the first and second derivatives yields

dR.y AN TV2 (aA AR
d_;‘) = (Rgol - (vmaxAl‘l)2 + Tl 4 L _Tl (55)

d?R, a’ A\ 32 (aArh)?
dazo = _(Rgol - (VmaxAtl)2 + 4 1) (4 1)

Al‘4 a2At4 —1/2
+ (Tl) (Rgol - (VmaxAl‘l)2 + Tl) (56)

Setting Eq. (55) equal to zero establishes Eq. (46), and rearranging
Eq. (56) shows that

d?R,; Reol
>0 if Vo, <-22
da? & Vmax At

This condition has already been established in Eq. (44). Therefore, a*
minimizes R, so long as a* < min{a,y, 2V /At }. In fact, the
minimizing feasible a is the minimum of a*, ap,y, and 2V, /At;.
Substituting these three values into Eq. (34) and solving for R
establishes the three conditions in Eq. (45). [

Remark 5 (extending the terminal time): In addition to infeasibility
caused by collision-avoidance constraints, infeasibility can also arise
due to the constraints on maximum velocity and control magnitudes.
Once again, assume that the original optimization described by
Problem 2 is feasible. It is possible that the MPC—SCP optimizations
are infeasible even when the original problem is feasible. This occurs
because the spacecraft have a limited communication radius in the
MPC formulation and, therefore, cannot detect collisions occurring
after the MPC horizon. This infeasibility is much more likely to occur
in situations where the maximum velocity and/or control are achieved
in the original problem. Therefore, the swarm reconfiguration should
be strictly feasible with respect to the maximum velocity and control
constraints when solved using Problem 2. Additionally, V.. is
an artificial constraint that was introduced to guarantee collision
avoidance. Therefore, it is an optimization parameter rather than a
value determined by the problem. To reduce the likelihood that the
maximum velocity causes infeasibility, V. should be chosen to be

Downloaded by UNIVERSITY OF ILLINOIS on November 3, 2014 | http://arc.aiaa.org | DOI: 10.2514/1.G000218

1736 MORGAN, CHUNG, AND HADAEGH

as large as possible while still satisfying Propositions 4 and 5 and
Theorem 6.

These methods will greatly reduce the probability that infeasibility
will occur but do not guarantee that it cannot happen. If the
optimization is infeasible due to maximum velocity or control
constraints, the final time can be extended to make the optimization
feasible. This can be done in a few different ways depending on the
swarm reconfiguration. First, the final time can be extended by a
fraction of an orbit without adjusting the final position. This is
desirable if the elapsed time of the reconfiguration is critical. The
drawback to this method is that it is not as fuel efficient as other
options since most of the spacecraft will have to adjust their
trajectories for the new final time. The next option is to extend the
final time and adjust the final position to the position on the J,-
invariant orbit [3] where the spacecraft would have been if the
optimization was completed as planned. This saves both time and fuel
but requires an extra calculation for the updated terminal positions.
Finally, the final time can be extended by a full orbit. This option is
fuel efficient compared to the first one but requires more time. Any of
these options will result in a feasible problem but the mission will
dictate which one is the most practical.

Remark 6 (multiple time step sizes): The time step Az, is a critical
parameter in Propositions 4 and 5 and Theorem 6. Reducing Az,
decreases the required communication radius R.,,, and collision
radius R, as described in Proposition 4 [Eq. (42)] and Theorem 6
[Eq. (45)], respectively. Additionally, the time step is also used as the
discretization time step, so reducing it also reduces the discretization
errors in the convexification process. However, reducing the time step
increases the number of variables in the optimization, which will
increase the run time ?,,,. This will make it more difficult to satisfy
Proposition 5 [Eq. (43)].

To achieve the benefits of a small time step without making the
optimization too large for MPC, separate time steps are defined for
the time period before the end of the horizon At; and for the time
period after the horizon At,. Since collisions and communications
are not considered after the horizon, Af, does not affect the
conditions in Propositions 4 and 5 or Theorem 6. Therefore, reducing
At achieves the same benefits as reducing the time step for the entire
optimization, but since most of the optimization occurs after the
horizon, the number of variables in the optimization does not increase
significantly.

Additionally, the perturbed trajectory must still satisfy the original
collision-avoidance constraint in order to guarantee collision-free
initial conditions for the following MPC iteration.

Theorem 7 (resolvability of collision-avoidance constraints):
Under Assumptions 1 and 2, the initial constraints and collision-
avoidance constraints, Eq. (32) and Eq. (29), respectively, are
simultaneously solvable if

R jK] > dj(ko. k= ko) + d(ko. k = ko) + Regt +2& (57)
where R satisfies the conditions of Theorem 6.

Proof: The unperturbed trajectories calculated at &, satisfy the
collision-avoidance constraint [Eq. (29)]. Proposition 1 states that
Eq. (29) implies

||C(x,[k]—x][k])||2 Zle[k] Vk= ko, ...,ko + TH (58)

Rewriting the left-hand side in terms of the perturbed trajectory and
applying Eq. (57) to the right-hand side yields

[CG K] = %;[kD |2 + ICGxi[k] = i[kD]2 + [[CG (k] = x, (kD]
> d;(ko. k — ko) + C?j(ko, k—ko) + Reor + 2&,
Vk=ko ... ko+Ty (59)

Applying the results of Proposition 2 and canceling terms results in

CEi[k] = X, [kDIl, = Reot +2&, Y k=ko, ... ko + Ty (60)

Equation (60) states that the actual trajectories never violate the
collision-avoidance constraint with R.,;. However, the initial posi-
tions of the following MPC-SCP iteration will have measurement
errors. In the worst case, both errors will be in the direction of the
other spacecraft. The term 2£, ensures that, after the state errors are
added, the initial positions of the next MPC—SCP iteration will still
maintain a separation of at least R . Therefore, the MPC-SCP
algorithm is resolvable at any time k < kg + Ty. O
An illustration of this condition is shown in Fig. 10.

V. Numerical Simulations

In this section, simulation results of the swarm reconfiguration are
presented using the algorithms developed in Sec. IV. A formation
reconfiguration with 10 spacecraft and a swarm reconfiguration with
100 spacecraft are solved using Method 1. The fuel and compu-
tational efficiencies of the methods are presented and compared.

All of the simulations are run with a reference orbit having the
following initial orbital elements: [a,e,i,Q,w,v] = [6878 km,
0,45 deg, 60 deg,0 deg,0 deg]. Additionally, the length of the
transfer #; is 5677 s, or one orbit. Each simulation is run using
both the SCP algorithm (Method 1) and the MPC-SCP algorithm
(Method 2), and the results are compared. The SCP algorithm has a
convergence tolerance of ¢ = 1073, and the simulation parameters are
as follows: Vi = 7.5 m/s, Upa = 0.1 m/s?, Ry = 0.125 km,
Ry = 0.875 km, Rogmm =3 km, Ty =12, At; =155, and
Aty = 60 s. Four simulations, which vary the number of spacecraft
and the maximum allowable perturbation, are solved using both
methods. In all the simulations, the initial and terminal conditions, x 0
and x; g, respectively, are determined by randomly generating the
positions and then applying the J,-invariant conditions from prior
work by Morgan et al. [3] to determine the desired velocities. All of the
convex optimizations were performed using CVX [30,31] with the
SDPT3 [32,33] solver.

A. Unperturbed Simulations

The simulation results for the 10-spacecraft formation reconfigu-
ration with no actuator or sensor errors are shown in Fig. 11.
Figure 1la shows the trajectories when using SCP, and Fig. 11b
shows the trajectories resulting from the MPC-SCP algorithm.

di(ko, k — ko) + &

——— - -

—_ -

-~

Fig. 10 Illustration of the resolvability condition with sensor and
actuator errors.

Downloaded by UNIVERSITY OF ILLINOIS on November 3, 2014 | http://arc.aiaa.org | DOI: 10.2514/1.G000218

MORGAN, CHUNG, AND HADAEGH 1737

Without actuator or sensor errors, both sets of trajectories converge to
within 1 m of the desired terminal position, with the average terminal
error being 0.613 m with SCP and 0.0047 m with MPC-SCP.
Figure 11 also shows that both the SCP and MPC-SCP trajectories
(squares) follow the optimal trajectory (lines) closely. Additionally,
the performances of each of the algorithms for both the 10-spacecraft
and 100-spacecraft simulations are shown in Table 1.

Remark 7 (centralized algorithm): As a baseline for the SCP and
MPC-SCP algorithms, a centralized approach was used to solve the
10-spacecraft reconfiguration without collision avoidance. The run
time for this algorithm was 358 s, which is an order of magnitude
longer than the SCP algorithm took to solve the reconfiguration with
collision-avoidance constraints, as shown in Table 1. Additionally,
including the collision-avoidance constraints prevents the centralized
method from finding a feasible solution, and increasing the number of
spacecraft to 100 causes the run time of the centralized algorithm to
exceed 12 hours.

Table 1 shows the average terminal position error and fuel usage
for both the SCP and MPC-SCP trajectories. On average, the
terminal error decreases by almost two orders of magnitude when the
MPC-SCP algorithm is used instead of the open-loop optimization.
Additionally, the computation time of the MPC—SCP algorithm is an
order of magnitude better than the SCP algorithm. Since the MPC—
SCP algorithm is continuously solving optimizations, the reported
algorithm time is the average over every optimization. On the other
hand, the fuel usage (AV) required to correct for these errors using
MPC-SCP is slightly more than the fuel usage of the SCP method. It
is important to note that the increase in fuel consumption is largely
due to the decentralized communication in the MPC-SCP algorithm.
In the MPC-SCP algorithm, spacecraft only consider collisions
with spacecraft within the communication range. This can cause
aggressive maneuvers to occur because a future collision is detected
and must be avoided in a short amount of time. This maneuver
requires a large amount of fuel and does not occur in the SCP case
because all-to-all communication is considered so all collisions are
known at the initial time. Additionally, the MPC-SCP algorithm
satisfies the collision-avoidance constraints when nonlinear,
continuous dynamics are used to simulate the motion. This is not
necessarily true for the SCP case. While the SCP trajectories are
collision free, the actual trajectories that result from simulating the
open-loop control do not necessarily satisfy the collision-avoidance
requirements. Overall, the MPC-SCP algorithm greatly improves
the accuracy of the terminal state, decentralizes the communication
of the swarm, and guarantees collision avoidance, with the only
disadvantage being a small increase in fuel consumption.

SCP trajectories for 10-spacecraft reconfiguration with
no perturbations

Optimal
41 O Actual SCP

y (km)

-4 ! ! ! ! !
-2 -15 -1 -05 0 0.5 1 1.5 2 25

x (km)

a) SCP trajectories

Table1 Simulation results for swarm reconfigurations using the
SCP and MPC-SCP algorithms with no actuator or sensor errors

Method performance
No. of Average Average Computation
spacecraft AV X , m/s terminal time, s

Method error, m
SCP (Method 1) 10 2.100 0.613 35.03

100 1.915 5.997 163.585
MPC-SCP 10 2.101 0.0047 3.69
(Method 2)

100 2.356 0.0069 12.58

B. Perturbed Simulations

In the following simulations, actuator and sensor errors are includ-
ed. The maximum allowable errors are £, = 1 m, &, = 7.5 mm/s,
and &, = 0.1 mm/s?. The simulation results for the 10-spacecraft
formation reconfiguration are shown in Fig. 12. Figure 12a shows the
trajectories when using SCP, and Fig. 12b shows the trajectories
resulting from the MPC—SCP algorithm. While the average terminal
error has increased due to the inclusion of the actuator and sensor
perturbations, the SCP algorithm still has a much larger average
terminal error than the MPC-SCP algorithm, with the average
terminal error of SCP and MPC-SCP being 163 m and just over 1 m,
respectively. The addition of perturbations also causes the SCP
trajectory (squares) to deviate from the optimal trajectory (lines), as
can be seen in Fig. 12a. In Figure 12b, however, the MPC-SCP
trajectories (squares) still closely follow the optimal trajectory
closely. Additionally, the performances of each of the algorithms for
both the 10-spacecraft and 100-spacecraft simulations are shown in
Table 2.

Table 2 shows the simulation results using the SCP and MPC-SCP
algorithms when perturbations are included on the actuators and
sensors. As in the unperturbed case, the MPC—-SCP algorithm greatly
reduces the average terminal error when compared to the SCP
algorithm. In addition to reducing the terminal error, the MPC-SCP
algorithm satisfies the conditions developed in Sec. IV. Therefore,
the MPC-SCP algorithm guarantees stability, resolvability, and
collision-free trajectories, whereas the SCP algorithm does not have
the same guarantees. Similar to the unperturbed case, the fuel
required in the MPC—SCP method is larger than in the SCP method
due to the decentralized communication and disturbance rejection
that occur in the MPC-SCP algorithm. Also, the computation times
are of the same order of magnitude as they were in the un-
perturbed case

MPC-SCP trajectories for 10-spacecraft reconfiguration with
no perturbations

Optimal
4t O Actual MPC

-4 L L L L L
-2 -15 -1 -05 0 0.5 1 1.5 2 25

x (km)

b) MPC-SCP trajectories

Fig. 11 x-y projection of the entire reconfiguration of 10 spacecraft with no perturbations.

Downloaded by UNIVERSITY OF ILLINOIS on November 3, 2014 | http://arc.aiaa.org | DOI: 10.2514/1.G000218

1738 MORGAN, CHUNG, AND HADAEGH

SCP trajectories for 10-spacecraft reconfiguration with
perturbations

Optimal
4t O Actual SCP

y (km)

-3t

_4 1 1 1 1 1 1 1 1 J
-2 -15 -1 -05 0 0.5 1 1.5 2 25

x (km)

a) SCP trajectories

MPC-SCP trajectories for 10-spacecraft reconfiguration with
perturbations
5 -

Optimal
4t O Actual MPC

y (km)

_4 1 1 1 1 1 1 1 1 J
-2 -15 -1 -05 0 0.5 1 1.5 2 25

x (km)

b) MPC-SCP trajectories

Fig. 12 x-y projection of the reconfiguration of 10 spacecraft with sensor and actuator perturbations.

VI. Conclusions

The optimal swarm guidance problem with collision avoidance
was solved using an MPC algorithm with SCP. To use SCP to solve
the optimal control problem, the dynamics and collision-avoidance
constraints were linearized and the problem was discretized. The
resulting problem was a convex optimization, which improved
the efficiency at which the problem could be solved. However, the
optimization problem was still centralized, meaning it became very
large as the number of spacecraft became large. To reduce the size of
the optimization that needed to be solved, the collision-avoidance
constraints were decentralized by having each spacecraft treat the
other spacecraft’s trajectories as fixed. This allowed each spacecraft
to run its own SCP algorithm to solve for its optimal trajectory as
long as it knew the trajectories of the other spacecraft. A decentralized
SCP algorithm (Method 1) was developed to use SCP to solve the
problem.

Once the problem was convexified and decentralized, a receding
horizon was introduced and MPC-SCP was applied. Using MPC—
SCP decreased the number of variables and constraints in the
optimizations that needed be solved, which allowed smaller time
steps in the optimizations. By using smaller time steps and shorter
horizons, the MPC-SCP algorithm restricted the distances each
spacecraft could travel during one optimization. This allowed relaxa-
tion of the communication requirements on each spacecraft by
considering communication between two spacecraft only if they were
within a certain distance from one another.

To ensure that the trajectories resulting from the MPC-SCP
optimizations converged to the terminal states, the terminal cost
function was converted to a convex optimization problem with a
terminal constraint. This constraint ensured that, if the optimization
was feasible, it would satisfy the terminal conditions. Also, an upper
bound on the magnitude of the velocity was introduced so that two
propositions could be developed to ensure that each of the spacecraft

Table 2 Simulation results for swarm reconfigurations using the
SCP and MPC-SCP algorithms with actuator or sensor errors

Method performance

No.of Average, Average Computation
Spacecraft AV X [m/s] terminal time, s

Method error, m
SCP (Method 1) 10 2.102 163.6 37.36

100 1.916 166.6 413.29
MPC-SCP 10 2.995 1.067 3.79
(Method 2)

100 2.894 1.013 10.32

converged to their desired terminal positions and to show that the
receding horizon optimizations had a solution. Additionally, a
theorem was developed to guarantee that the spacecraft do not collide
in between time steps.

These feasibility conditions were then applied to a randomly
distributed swarm, and the MPC-SCP algorithm was used to
compute the optimal trajectories. These results performed well
compared to the trajectories that resulted from solving a single
optimization at the initial time. The MPC-SCP algorithm drove the
spacecraft to within several millimeters of the desired terminal state,
despite the linearization and discretization errors of the optimization.
On the other hand, the single optimization trajectory missed the
desired terminal state by several meters. Additionally, the time
required to run each optimization of the MPC—SCP algorithm was
much less than the time required to solve for the entire trajectory at the
initial time.

Swarms of spacecraft can be an extremely useful tool for
interferometry and distributed sensing, but in order for these missions
to become practical, fuel and computationally efficient guidance and
control algorithms must be developed. The fuel- and computationally
efficient MPC—-SCP algorithm developed in this paper is a necessary
step toward this goal. Due to the orders-of-magnitude increase in the
number of spacecraft and the decrease in the size of the spacecraft, the
fuel, communication, and computational requirements become very
restrictive. The MPC—SCP algorithm developed in this paper enables
swarms of spacecraft to change their formation using minimal fuel
and computational resources.

Appendix: Dynamics of Chief and Relative Motion

The translational dynamics of spacecraft in the LVLH frame is
described by Eq. (1) with

K ;= —a, 0w,
gl ®) = a, n? - 0? — w? —-a, |¢
| 0., a, 11]2- -2
sin i sin 6 r(ny =)
+ (=0 sinicos 8 | + 0 + Ugier (Al)
cos i 0

where

Downloaded by UNIVERSITY OF ILLINOIS on November 3, 2014 | http://arc.aiaa.org | DOI: 10.2514/1.G000218

MORGAN, CHUNG, AND HADAEGH 1739

_2k,2 sin i sin @ _2k,2rjz
e
J
o u kp Skpsin?isin’d , pu +k,2 5kyariy
T=RT5 r i _r7 rj. r}
ri=/r+x)* +yi +2
riz = (r+x;)sinisin @ +y; sin i cos @ + z; cos i
kjsin2isin@ r h . .

a)xz—T ﬁuN wz=ﬁ Oy = 0y a; = o,

(A2)

The orbital parameters of the chief orbit (origin of the LVLH
frame) are governed by the following equation of motion with J,
effects

uo P kp

;‘ZUX i)x=——2+—3——4(1—3sin2isin29)—|—uR
r r r
. k;, sin? i sin 20
h= _sz + (r)ur
Q- 2k, cos isin®# r sin @
B hr? h sin i “N
P kj, sin 2i sin 26 r cos 6 "
- 2 hr h N
. h 2k, cos?isin®@ r sin 6 cos i
0=—+—2— - — Juy (A3)
r hr’ h sin i

where e = (ug, ur, uy)” is the chief control in the radial,
tangential, and normal directions, respectively.

Acknowledgments

This work was supported by a NASA Office of the Chief
Technologist Space Technology Research Fellowship. Government
sponsorship is acknowledged. This research was carried out in part at
the Jet Propulsion Laboratory, California Institute of Technology,
under a contract with the NASA.

References

[1] Hadaegh, F. Y., Chung, S.-J., and Manaroha, H. M., “On Development

of 100-Gram-Class Spacecraft for Swarm Applications,” IEEE Systems

Journal (accepted for publication), available online at http:/arcl.ae

.llinois.edu/FemtoSat_Swarm_Final2013.pdf [retrieved 2014].

Chung, S.-J., and Hadaegh, F. Y., “Swarms of Femtosats for Synthetic

Aperture Applications,” Proceedings of the Fourth International

Conference on Spacecraft Formation Flying Missions and Technol-

ogies [CD-ROM], National Research Council Canada, Ottawa,

May 2011.

Morgan, D., Chung, S.-J., Blackmore, L., Acikmese, B., Bayard, D., and

Hadaegh, F. Y., “Swarm-Keeping Strategies for Spacecraft Under J, and

Atmospheric Drag Perturbations,” Journal of Guidance, Control, and

Dynamics, Vol. 35, No. 5, 2012, pp. 1492-1506.

doi:10.2514/1.55705

[4] Scharf, D. P., Hadaegh, F. Y., and Ploen, S. R., “A Survey of Spacecraft
Formation Flying Guidance and Control (Part I): Guidance,”
Proceedings of the American Control Conference, Evanston, IL,
June 2003, pp. 1733-1739.

[5] Scharf, D. P., Hadaegh, F. Y., and Ploen, S. R., “A Survey of Spacecraft
Formation Flying Guidance and Control (PartII): Control,” Proceedings
of the American Control Conference, Evanston, IL, June 2004,
pp- 2976-2984.

[6] Alfriend, K. T., Vadali, S. R., Gurfil, P., How, J. P, and Breger, L.,
Spacecraft Formation Flying: Dynamics, Control and Navigation,
Elsevier, Oxford, 2009, pp. 143-222.

[7]1 D’Amico, S., and Montenbruck, O., “Proximity Operations of
Formation-Flying Spacecraft Using an Eccentricity/Inclination Vector

[2

—

3

[t}

Separation,” Journal of Guidance, Control, and Dynamics, Vol. 29,

No. 3, 2006, pp. 554-563.

doi:10.2514/1.15114

Breger, L., and How, J. P, “Gauss’s Variational Equation-Based

Dynamics and Control for Formation Flying Spacecraft,” Journal of

Guidance, Control, and Dynamics, Vol. 30, No. 2, 2007, pp. 437-448.

doi:10.2514/1.22649

Vaddi, S. S., Alfriend, K. T., Vadali, S. R., and Sengupta, P., “Formation

Establishment and Reconfiguration Using Impulsive Control,”

Journal of Guidance, Control, and Dynamics, Vol. 28, No. 2, 2005,

pp. 262-268.

doi:10.2514/1.6687

[10] Campbell, M. E., “Planning Algorithm for Multiple Satellites Clusters,”

Journal of Guidance, Control, and Dynamics, Vol. 26, No. 5, 2003,

pp- 770-780.

Campbell, M. E., “Collision Monitoring within Satellite Clusters,” IEEE

Transactions on Control Systems Technology, Vol. 13, No. 1, 2005,

pp. 42-55.

[12] Zanon, D. J., and Campbell, M. E., “Optimal Planner for Spacecraft
Formations in Elliptical Orbits,” Journal of Guidance, Control, and
Dynamics, Vol. 29, No. 1, 2006, pp. 161-171.

[13] Murray, R. M., “Recent Research in Cooperative Control of
Multivehicle Systems,” Journal of Dynamic Systems, Measurement
and Control, Vol. 129, No. 5, 2007, pp. 571-583.
doi:10.1115/1.2766721

[14] Jadbabaie, A., Lin, J., and Morse, A. S., “Coordination of Groups of
Mobile Autonomous Agents Using Nearest Neighbor Rules,” IEEE
Transactions on Automatic Control, Vol. 48, No. 6, 2003, pp. 2976~
2984.
doi:10.1109/TAC.2003.812781

[15] Earl, M. G., and D’Andrea, R., “Iterative MILP Methods for Vehicle-
Control Problems,” IEEE Transactions on Robotics, Vol. 21, No. 6,
2005, pp. 1158-1167.
doi:10.1109/TR0O.2005.853499

[16] Chung, S.-J., Bandyopadhyay, S., Chang, I., and Hadaegh, F. Y., “Phase
Synchronization Control of Complex Networks of Lagrangian Systems
on Adaptive Digraphs,” Automatica, Vol. 49, No. 5, 2013, pp. 1148-
1161.
doi:10.1016/j.automatica.2013.01.048

[17] Reif, J., and Sharir, M., “Motion Planning in the Presence of Moving
Obstacles,” Journal of the Association for Computing Machinery,
Vol. 41, No. 4, 1994, pp. 764-790.
doi:10.1145/179812.179911

[18] Scharf, D. P., Acikmese, B., Ploen, S. R., and Hadaegh, F. Y,
“Three-Dimensional Reactive Collision Avoidance with Multiple
Colliding Spacecraft for Deep-Space and Earth-Orbiting Formations,”
Proceedings of the Fourth International Conference on Spacecraft
Formation Flying Missions and Technologies, National Research
Council Canada, Ottawa, May 2011.

[19] Rao, A. V., “A Survey of Numerical Methods for Optimal Control,”
Advances in the Astronautical Sciences, Vol. 135, 2010, pp. 497-528.

[20] Conway, B. A., Spacecraft Trajectory Optimization, Cambridge Univ.
Press, New York, 2010, pp. 16-36.

[21] Ross, I. M., and Fahroo, F., “Legendre Pseudospectral Approximations
of Optimal Control Problems,” Lecture Notes in Control and
Information Systems, Vol. 295, 2003, pp. 327-342.
doi:10.1007/978-3-540-45056-6_21

[22] Richards, A., Kuwata, Y., and How, J., “Experimental Demonstration of
Real-Time MILP Control,” AIAA Guidance, Navigation, and Control
Conference, AIAA Paper 2003-5802, 2003.

[23] Vitus, M. P, Pradeep, V., Hoffman, G. M., Waslander, S. L., and Tomlin,
C. J., “Tunnel-MILP: Path Planning with Sequential Convex
Polytopes,” AIAA Guidance, Navigation, and Control Conference,
AIAA Paper 2008-7132, 2008.

[24] Vitus, M. P, Waslander, S. L., and Tomlin, C. J., “Locally Optimal
Decomposition for Autonomous Obstacle Avoidance with the Tunnel-
MILP Algorithm,” IEEE Conference on Decision and Control, IEEE,
Piscataway, NJ, 2008, pp. 540-545.

[25] Boyd, S., and Vandenberghe, L., Convex Optimization, Cambridge
Univ. Press, Cambridge, England, U.K., 2004, pp. 21-189.

[26] Mattingley, J., Wang, Y., and Boyd, S., “Receding Horizon Control:
Automatic Generation of High-Speed Solvers,” IEEE Control Systems
Magazine, Vol. 31, No. 3, 2011, pp. 52-65.

[27] Acikmese, B., Scharf, D. P,, Murray, E. A., and Hadaegh, F. Y., “A
Convex Guidance Algorithm for Formation Reconfiguration,” AIAA
Guidance, Navigation, and Control Conference, AIAA Paper 2006-
6070, 2006.

[28] Schulman, J., Ho, J., Lee, A., Awwal, 1., Bradlow, H., and Abbeel, P.,
“Finding Locally Optimal, Collision-Free Trajectories with Sequential

[8

[t}

[9

—

[11

http://arcl.ae.illinois.edu/FemtoSat_Swarm_Final2013.pdf
http://arcl.ae.illinois.edu/FemtoSat_Swarm_Final2013.pdf
http://arcl.ae.illinois.edu/FemtoSat_Swarm_Final2013.pdf
http://arcl.ae.illinois.edu/FemtoSat_Swarm_Final2013.pdf
http://arcl.ae.illinois.edu/FemtoSat_Swarm_Final2013.pdf
http://dx.doi.org/10.2514/1.55705
http://dx.doi.org/10.2514/1.55705
http://dx.doi.org/10.2514/1.55705
http://dx.doi.org/10.2514/1.15114
http://dx.doi.org/10.2514/1.15114
http://dx.doi.org/10.2514/1.15114
http://dx.doi.org/10.2514/1.22649
http://dx.doi.org/10.2514/1.22649
http://dx.doi.org/10.2514/1.22649
http://dx.doi.org/10.2514/1.6687
http://dx.doi.org/10.2514/1.6687
http://dx.doi.org/10.2514/1.6687
http://dx.doi.org/10.1115/1.2766721
http://dx.doi.org/10.1115/1.2766721
http://dx.doi.org/10.1115/1.2766721
http://dx.doi.org/10.1109/TAC.2003.812781
http://dx.doi.org/10.1109/TAC.2003.812781
http://dx.doi.org/10.1109/TAC.2003.812781
http://dx.doi.org/10.1109/TAC.2003.812781
http://dx.doi.org/10.1109/TRO.2005.853499
http://dx.doi.org/10.1109/TRO.2005.853499
http://dx.doi.org/10.1109/TRO.2005.853499
http://dx.doi.org/10.1109/TRO.2005.853499
http://dx.doi.org/10.1016/j.automatica.2013.01.048
http://dx.doi.org/10.1016/j.automatica.2013.01.048
http://dx.doi.org/10.1016/j.automatica.2013.01.048
http://dx.doi.org/10.1016/j.automatica.2013.01.048
http://dx.doi.org/10.1016/j.automatica.2013.01.048
http://dx.doi.org/10.1016/j.automatica.2013.01.048
http://dx.doi.org/10.1145/179812.179911
http://dx.doi.org/10.1145/179812.179911
http://dx.doi.org/10.1145/179812.179911
http://dx.doi.org/10.1007/978-3-540-45056-6_21
http://dx.doi.org/10.1007/978-3-540-45056-6_21

Downloaded by UNIVERSITY OF ILLINOIS on November 3, 2014 | http://arc.aiaa.org | DOI: 10.2514/1.G000218

1740

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

MORGAN, CHUNG, AND HADAEGH

Convex Optimization,” Robotics: Science and Systems, Vol. 9, No. 1,
June 2013, pp. 1-10.

Byrd, R. H., Gilbert, J. C., and Nocedal, J., “A Trust Region Method
Based on Interior Point Techniques for Nonlinear Programming,”
Mathematical Programming, Vol. 89, No. 1, 2000, pp. 149-185.
doi:10.1007/PL0O0011391

Grant, M., and Boyd, S., “CVX: Matlab Software for Disciplined
Convex Programming, Ver. 2.0 Beta,” Sept. 2012, available online at
http://cvxr.com/cvx [retrieved 28 June 2013].

Grant, M., and Boyd, S., “Graph Implementations for Nonsmooth
Convex Programs,” Recent Advances in Learning and Control, edited
by Blondel, V., Boyd, S., and Kimura, H., Lecture Notes in Control and
Information Sciences, Springer—Verlag, New York, 2008, pp. 95-110,
http://stanford.edu/~boyd/papers/pdf/graph_dcp.html [retrieved 2014].
Toh, K. C., Todd, M. J., and Tutuncu, R. H., “SDPT3: A Matlab
Software Package for Semidefinite Programming,” Optimization
Methods and Software, Vol. 11, Nos. 1-4, 1999, pp. 545-581.
doi:10.1080/10556789908805762

Tutuncu, R. H., Toh, K. C., and Todd, M. J., “Solving semidefinite-
quadratic-linear programs using SDPT3,” Mathematical Programming
Ser. B, Vol. 95, No. 2, 2003, pp. 189-217.

Anderson, E. D., and Anderson, K. D., “MOSEK: High Performance
Software for Large-Scale LP, QP, SOCP, SDP and MIP Including
Interfaces to C, Java, MATLAB,NET and Python,” MOSEK,
Copenhagen, 2012, http://www.mosek.com/ [retrieved 2014].
Morgan, D., Chung, S.-J., and Hadaegh, F. Y., “Spacecraft Swarm
Guidance Using a Sequence of Decentralized Convex Optimizations,”
AIAA/AAS Astrodynamics Specialist Conference, AIAA Paper 2012-
4583, 2012.

Bemporad, A., and Morari, M., “Robust Model Predictive Control: A
Survey,” Robustness in Identification and Control, Vol. 245, 1999,
pp. 207-226.

doi:10.1007/BFb0109870

Mayne, D. Q., Rawlings, J. B., Rao, C. V., and Scokaert, P. O. M.,
“Constrained Model Predictive Control: Stability and Optimality,”
Automatica, Vol. 36, No. 6, 2000, pp. 789-814.
doi:10.1016/S0005-1098(99)00214-9

[38]

[39

[40]

[41]

[42]

[43]

[44]

[45]

[46]

Richards, A., and How, J. P, “Robust Variable Horizon Model
Predictive Control for Vehicle Maneuvering,” International Journal of
Robust and Nonlinear Control, Vol. 16, No. 7, 2006, pp. 333-351.
doi:10.1002/(ISSN)1099-1239

Acikmese, B., Carson, J. M., and Bayard, D. S., “A Robust Model
Predictive Control Algorithm for Incrementally Conic Uncertain/
Nonlinear Systems,” International Journal of Robust and Nonlinear
Control, Vol. 21, No. 5, 2011, pp. 563-590.

doi:10.1002/rnc.1613

Richards, A., and How, J., “Robust Model Predictive Control with
Imperfect Information,” American Control Conference, IEEE, Portland,
OR, June 2005, pp. 268-273.

Wang, Y., and Boyd, S., “Fast Model Predictive Control Using Online
Optimization,” IEEE Transactions on Control Systems Technology,
Vol. 18, No. 2, 2010, pp. 267-278.

doi:10.1109/TCST.2009.2017934

Canale, M., Cerone, V., Piga, D., and Regruto, D., “Fast Implementation
of Model Predictive Control with Guaranteed Performance,”
IEEE Conference on Decision and Control, IEEE, Piscataway, NJ,
Dec. 2011, pp. 3375-3380.

Keviczky, T., Borrelli, F., Fregene, K., Godbole, D., and Balas, G. J.,
“Decentralized Receding Horizon Control and Coordination of
Autonomous Vehicle Formations,” IEEE Transactions on Control
Systems Technology, Vol. 16, No. 1, 2008, pp. 19-33.
doi:10.1109/TCST.2007.903066

Carson, J. M., and Acikmese, B., “A Model-Predictive Control
Technique with Guaranteed Resolvability and Required Thruster Silent
Times for Small-Body Proximity Operations,” AIAA Guidance,
Navigation, and Control Conference, AIAA Paper 2006-6780, 2006.
Xu, G., and Wang, D., “Nonlinear Dynamic Equations of Satellite
Relative Motion Around an Oblate Earth,” Journal of Guidance,
Control, and Dynamics, Vol. 31, No. 5, 2008, pp. 1521-1524.
doi:10.2514/1.33616

Ross, I. M., “Space Trajectory Optimization and L'-Optimal Control
Problems,” Modern Astrodynamics, Butterworth-Heinemann, New
York, 2006, pp. 155-188.

http://dx.doi.org/10.1007/PL00011391
http://dx.doi.org/10.1007/PL00011391
http://cvxr.com/cvx
http://cvxr.com/cvx
http://stanford.edu/~boyd/papers/pdf/graph_dcp.html
http://stanford.edu/~boyd/papers/pdf/graph_dcp.html
http://stanford.edu/~boyd/papers/pdf/graph_dcp.html
http://dx.doi.org/10.1080/10556789908805762
http://dx.doi.org/10.1080/10556789908805762
http://www.mosek.com/
http://www.mosek.com/
http://www.mosek.com/
http://dx.doi.org/10.1007/BFb0109870
http://dx.doi.org/10.1007/BFb0109870
http://dx.doi.org/10.1016/S0005-1098(99)00214-9
http://dx.doi.org/10.1016/S0005-1098(99)00214-9
http://dx.doi.org/10.1002/(ISSN)1099-1239
http://dx.doi.org/10.1002/(ISSN)1099-1239
http://dx.doi.org/10.1002/rnc.1613
http://dx.doi.org/10.1002/rnc.1613
http://dx.doi.org/10.1002/rnc.1613
http://dx.doi.org/10.1109/TCST.2009.2017934
http://dx.doi.org/10.1109/TCST.2009.2017934
http://dx.doi.org/10.1109/TCST.2009.2017934
http://dx.doi.org/10.1109/TCST.2009.2017934
http://dx.doi.org/10.1109/TCST.2007.903066
http://dx.doi.org/10.1109/TCST.2007.903066
http://dx.doi.org/10.1109/TCST.2007.903066
http://dx.doi.org/10.1109/TCST.2007.903066
http://dx.doi.org/10.2514/1.33616
http://dx.doi.org/10.2514/1.33616
http://dx.doi.org/10.2514/1.33616

