A high-throughput virtual screening in Grid for new tubulin-targeted inhibitors of plant fungal pathogens

P. A. Karpov, O. M. Demchuk, O. V. Rayevsky, S. P. Ozheredov, S. I. Spivak, D. O. Samofalova, Ya. B. Blume
2018 Faktori eksperimentalʹnoï evolûcìï organìzmìv  
Aim. To select new tubulin-targeted inhibitors of plant fungal pathogens based on results of high-throughput virtual screening in Grid. Methods. Protein and ligand spatial structure modelling (I-Tasser, Grid), design and virtual screening ligands library (UCSF Dock 6, Grid), molecular docking (CCDC Gold), molecular dynamics simulation (Gromacs, Grid). Results. 240 structural models of tubulin molecules (82 α-, 111 β- and 47 γ-tubulin) from 62 species of phytopathogenic fungi were constructed.
more » ... was found that imidazole ligands, demonstrate strongest affinity to α- and β-tubulin. It was found that among α-, β- and γ-tubulin, taxol binding site of β-tubulin possess the strongest potential as the fungicidal drugs target. It was selected 50 leader compounds: 23 with affinity for GTP/GDF-exchange site and 27 with affinity for taxol-binding site. Conclusions. It was found, that in phytopathogenic fungi, taxol binding site of β-tubulin are the main fungicid drug target (in compare to other tubulin site or isotype). The highest affinity was predicted for the compounds F0478-0219, F0478-0166 and β-tubulin from Puccinia graminis f. sp. Tritici, as well as for the compound F0478-0385 and β-tubulin from Magnaporthe oryzae. Keywords: pathogenic fungi, fungicides, tubulin, virtual screening, Grid.
doi:10.7124/feeo.v22.971 fatcat:d6s72p6jmjf4laoxati4zyyhwy