Comparing graphs

Nils Morten Kriege, Technische Universität Dortmund, Technische Universität Dortmund
2015
Graphs are a well-studied mathematical concept, which has become ubiquitous to represent structured data in many application domains like computer vision, social network analysis or chem- and bioinformatics. The ever-increasing amount of data in these domains requires to efficiently organize and extract information from large graph data sets. In this context techniques for comparing graphs are fundamental, e.g., in order to obtain meaningful similarity measures between graphs. These are a
more » ... uisite for the application of a variety of data mining algorithms to the domain of graphs. Hence, various approaches to graph comparison evolved and are wide-spread in practice. This thesis is dedicated to two different strategies for comparing graphs: maximum common subgraph problems and graph kernels. We study maximum common subgraph problems, which are based on classical graph-theoretical concepts for graph comparison and are NP-hard in the general case. We consider variants of the maximum common subgraph problem in restricted graph classes, which are highly relevant for applications in cheminformatics. We develop a polynomial-time algorithm, which allows to compute a maximum common subgraph under block and bridge preserving isomorphism in series-parallel graphs. This generalizes the problem of computing maximum common biconnected subgraphs in series-parallel graphs. We show that previous approaches to this problem, which are based on the separators represented by standard graph decompositions, fail. We introduce the concept of potential separators to overcome this issue and use them algorithmically to solve the problem in series-parallel graphs. We present algorithms with improved bounds on running time for the subclass of outerplanar graphs. Finally, we establish a sufficient condition for maximum common subgraph variants to allow derivation of graph distance metrics. This leads to polynomial-time computable graph distance metrics in restricted graph classes. This progress constitutes a step towards solving practicall [...]
doi:10.17877/de290r-16358 fatcat:btrj2zdwlngxncyr7gpywat4be