A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2023; you can also visit the original URL.
The file type is application/pdf
.
Application of statistical and machine learning techniques for landslide susceptibility mapping in the Himalayan road corridors
2022
Open Geosciences
Landslides are frequent geological hazards, mainly in the rainy season along road corridors worldwide. In the present study, we have comparatively analyzed landslide susceptibility by employing integrated geospatial approaches, i.e., data-driven, knowledge-driven, and machine learning (ML), along the main road corridors of the Muzaffarabad district. The landslide inventory of three road corridors is developed to evaluate landslide susceptibility, and eleven landslide causative factors (LCFs)
doi:10.1515/geo-2022-0424
fatcat:43zgveqw5zgllgfeuy7alnxvmq