A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2020; you can also visit the original URL.
The file type is `application/pdf`

.

##
###
Estimating Gaps in Martingales and Applications to Coin-Tossing: Constructions and Hardness
[article]

2019
*
arXiv
*
pre-print

Consider designing a distributed coin-tossing protocol for n processors such that the probability of heads is X0 in [0,1], and an adversary can reset one processor to change the distribution of the final outcome. For X0=1/2, in the non-cryptographic setting, Blum's majority protocol is 1/√(2π n) insecure. For computationally bounded adversaries and any X0 in [0,1], the protocol of Moran,Naor,Segev (2009) is only O(1/n) insecure. In this paper, we study discrete-time martingales (X0,X1,..,Xn)

arXiv:1907.01694v2
fatcat:uvwaec4at5grll2dt54vs6misu