Development and validation of Nomograms for predicting overall survival and Cancer-specific survival in patients with ovarian clear cell carcinoma

Qian Chen, Shu Wang, Jing-He Lang
2020 Journal of Ovarian Research  
Background Ovarian clear cell carcinoma (OCCC) is a rare histologic type of ovarian cancer. There is a lack of an efficient prognostic predictive tool for OCCC in clinical work. This study aimed to construct and validate nomograms for predicting the overall survival (OS) and cancer-specific survival (CSS) in patients with OCCC. Methods Data of patients with primary diagnosed OCCC in the Surveillance, Epidemiology, and End Results (SEER) database between 2010 and 2016 was extracted. Prognostic
more » ... acted. Prognostic factors were evaluated with LASSO Cox regression and multivariate Cox regression analysis, which were applied to construct nomograms. The performance of the nomogram models was assessed by the concordance index (C-index), calibration plots, decision curve analysis (DCA) and risk subgroup classification. The Kaplan-Meier curves were plotted to compare survival outcomes between subgroups. Results A total of 1541 patients from SEER registries were randomly divided into a training cohort (n = 1079) and a validation cohort (n = 462). Age, laterality, stage, lymph node (LN) dissected, organ metastasis and chemotherapy were independently and significantly associated with OS, while laterality, stage, LN dissected, organ metastasis and chemotherapy were independent risk factors for CSS. Nomograms were developed for the prediction of 3- and 5-year OS and CSS. The C-indexes for OS and CSS were 0.802[95% confidence interval (CI) 0.773–0.831] and 0.802 (0.769–0.835), respectively, in the training cohort, while 0.746 (0.691–0.801) and 0.770 (0.721–0.819), respectively, in the validation cohort. Calibration plots illustrated favorable consistency between the nomogram predicted and actual survival. C-index and DCA curves also indicated better performance of nomogram than the AJCC staging system. Significant differences were observed in the survival curves of different risk subgroups. Conclusions We have constructed predictive nomograms and a risk classification system to evaluate the OS and CSS of OCCC patients. They were validated to be of satisfactory predictive value, and could aid in future clinical practice.
doi:10.1186/s13048-020-00727-3 pmid:33069259 fatcat:7yvz7xcoqncm7obb3ob2xkitwm