p-ADIC WELCH BOUNDS AND p-ADIC ZAUNER CONJECTURE [post]

K. MAHESH KRISHNA
2022 unpublished
Let $p$ be a prime. For $d\in \mathbb{N}$, let $\mathbb{Q}_p^d$ be the standard $d$-dimensional p-adic Hilbert space. Let $m \in \mathbb{N}$ and $\text{Sym}^m(\mathbb{Q}_p^d)$ be the p-adic Hilbert space of symmetric m-tensors. We prove the following result. Let $\{\tau_j\}_{j=1}^n$ be a collection in $\mathbb{Q}_p^d$ satisfying (i) $\langle \tau_j, \tau_j\rangle =1$ for all $1\leq j \leq n$ and (ii) there exists $b \in \mathbb{Q}_p$ satisfying $\sum_{j=1}^{n}\langle x, \tau_j\rangle \tau_j
more » ... for all $ x \in \mathbb{Q}^d_p.$ Then \begin{align}\label{WELCHNONABSTRACT} \max_{1\leq j,k \leq n, j \neq k}\{|n|, |\langle \tau_j, \tau_k\rangle|^{2m} \}\geq \frac{|n|^2}{\left|{d+m-1 \choose m}\right| }.\end{align}We call Inequality (\ref{WELCHNONABSTRACT}) as the p-adic version of Welch bounds obtained by Welch [\textit{IEEE Transactions on Information Theory, 1974}]. Inequality (\ref{WELCHNONABSTRACT}) differs from the non-Archimedean Welch bound obtained recently by M. Krishna as one can not derive one from another. We formulate p-adic Zauner conjecture.
doi:10.31219/osf.io/e9g8z fatcat:kbtt3yhwk5c43nkate7z2fvdvu