Micropatterned Carbon-on-Quartz Electrode Chips for Photocurrent Generation from Thylakoid Membranes

Ada-Ioana Bunea, Arto Heiskanen, Galina Pankratova, Giulio Tesei, Mikael Lund, Hans-Erik Åkerlund, Donal Leech, Niels Bent Larsen, Stephan Sylvest Keller, Lo Gorton, Jenny Emnéus
2018 ACS Applied Energy Materials  
Harvesting the energy generated by photosynthetic organisms through light-dependent reactions is a significant step towards a sustainable future energy supply. Thylakoid membranes are the site of photosynthesis, and thus particularly suited for developing photo-bioelectrochemical cells. Novel electrode materials and geometries could potentially improve the efficiency of energy harvesting using thylakoid membranes. For commercial applications, electrodes with large surface areas are needed.
more » ... lithographic patterning of a photoresist, followed by pyrolysis, is a flexible and fast approach for the fabrication of carbon electrodes with tailored properties. In this work, electrode chips consisting of patterned carbon supported on quartz were designed and fabricated. The patterned electrode area is 1 cm 2 , and the measurement chamber footprint is 0.5 cm 2 , one order of magnitude larger than previously-tested electrodes for thylakoid membrane immobilization. The use of a transparent substrate allows back-side illumination, protecting the bioelectrochemical system from the environment and vice versa. Two different mediators, monomeric ([Ru(NH 3 ) 6 ] 3+ ) and polymeric ([Os(2,2-bipyridine) 2 -poly(N-vinylimidazole) 10 Cl] +/2+ ) are used for evaluating photocurrent generation from thylakoid membranes with different electrode geometries. Current densities up to 71 µA cm -2 are measured upon illumination through the transparent electrode chip with solar simulated irradiance (1000 W m -2 ).
doi:10.1021/acsaem.8b00500 fatcat:uqxmzwqubjgw7pucbz7my7vqvq