Mixed-precision weights network for field-programmable gate array

Ninnart Fuengfusin, Hakaru Tamukoh, Chi-Hua Chen
2021 PLoS ONE  
In this study, we introduced a mixed-precision weights network (MPWN), which is a quantization neural network that jointly utilizes three different weight spaces: binary {−1,1}, ternary {−1,0,1}, and 32-bit floating-point. We further developed the MPWN from both software and hardware aspects. From the software aspect, we evaluated the MPWN on the Fashion-MNIST and CIFAR10 datasets. We systematized the accuracy sparsity bit score, which is a linear combination of accuracy, sparsity, and number
more » ... bits. This score allows Bayesian optimization to be used efficiently to search for MPWN weight space combinations. From the hardware aspect, we proposed XOR signed-bits to explore floating-point and binary weight spaces in the MPWN. XOR signed-bits is an efficient implementation equivalent to multiplication of floating-point and binary weight spaces. Using the concept from XOR signed bits, we also provide a ternary bitwise operation that is an efficient implementation equivalent to the multiplication of floating-point and ternary weight space. To demonstrate the compatibility of the MPWN with hardware implementation, we synthesized and implemented the MPWN in a field-programmable gate array using high-level synthesis. Our proposed MPWN implementation utilized up to 1.68-4.89 times less hardware resources depending on the type of resources than a conventional 32-bit floating-point model. In addition, our implementation reduced the latency up to 31.55 times compared to 32-bit floating-point model without optimizations.
doi:10.1371/journal.pone.0251329 pmid:33970965 pmcid:PMC8109814 fatcat:v5svfwclxjhaxf5bkrfdrwaiqu