A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2015; you can also visit the original URL.
The file type is application/pdf
.
Clustering data streams with weightless neural networks
2011
The European Symposium on Artificial Neural Networks
Producing good quality clustering of data streams in real time is a difficult problem, since it is necessary to perform the analysis of data points arriving in a continuous style, with the support of quite limited computational resources. The incremental and evolving nature of the resulting clustering structures must reflect the dynamics of the target data stream. The WiSARD weightless perceptron, and its associated DRASiW extension, are intrinsically capable of, respectively, performing
dblp:conf/esann/CardosoLGGF11
fatcat:2qzo2jnjcvgyrkrzzqese5wdpu