
170740-7475/02/$17.00 © 2002 IEEENovember–December 2002

THE CONTINUING GROWTH in network band-

width and services, the need to adapt products

to rapid market changes, and the introduction of

new network protocols have created the need for

a new breed of high-performance, flexible sys-

tem-on-a-chip (SoC) design platforms. Emerging

to meet this challenge is the network processor

unit. An NPU is a SoC that includes a highly inte-

grated set of programmable or hardwired accel-

erated engines, a memory subsystem, high-speed

interconnect, and media interfaces to handle

packet processing at wire speed.1

Programmable NPUs preserve customers’

investments by letting them track ongoing spec-

ification changes.2 By developing a program-

mable NPU as a reusable platform, network

designers can amortize a significant design

effort over a range of architecture derivatives.

They can also meet technical challenges aris-

ing from a product’s time-to-market constraints,

as well as economic constraints arising from a

product’s brief in-market time.

StepNP is a system-level exploration platform

for NPUs developed at STMicroelectronics. Its

main components are a high-level multiproces-

sor-architecture simulation model; a network

router application framework; and a SoC con-

trol, debugging, and analysis toolset. We focus

here on the hardware architecture simulation

platform, with emphasis on the transaction-level

communication channel interface and our

model interaction, instrumentation, and analy-

sis approach.

Wire-speed packet forwarding
Packet forwarding over a network includes

the following main tasks: header parsing, pack-

et classification, lookup, computation, data

manipulation, queue management, and con-

trol processing. Control processing usually

takes place on a standard reduced-instruction-

set-computing (RISC) processor linked to the

NPU and is not the focus of this article.

Wire-speed packet forwarding, at rates often

exceeding 1 Gbit per second, poses many more

challenges than general-purpose data process-

ing. In network processing, both memory capac-

StepNP: A System-Level
Exploration Platform for
Network Processors

The fast-changing communications market

requires high-performance yet flexible network-

processing platforms. StepNP is an exploratory

network processor simulation environment for

exploring applications, multiprocessor network-

processing architectures, and SoC tools.

Supporting model interaction, instrumentation,

and analysis, the platform lets R&D teams easily

add new processors, coprocessors, and

interconnects.

Pierre G. Paulin, Chuck Pilkington, and
Essaid Bensoudane
STMicroelectronics

speterson
This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of OCP-IP's products or services. Internal or personal use of this material is permitted. However, permission to reprint / republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by sending a blank email message to pubs-permissions@ieee.org. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.

speterson
Copyright (C) 2002 IEEE. Reprinted from IEEE Design & Test Computers, November-December 2002.

ity and bandwidth are extremely demanding.

The interconnect between processors, memo-

ries, and coprocessors must support a very high,

cost-effective, scalable bandwidth.3,4

A key aspect of efficient NPU hardware use

is latency hiding. The most common latency-

hiding approach is multithreading, which effi-

ciently multiplexes a processing element’s

hardware. Multithreading lets the hardware

process other streams while another thread

waits for memory access or coprocessor exe-

cution. Most NPUs have separate register banks

for different threads, with hardware units that

schedule threads and swap them in one cycle.

We call this function hardware multithreading.

StepNP overview
In developing the StepNP platform, we had

several objectives. We wanted the platform to be

� a challenging internal driver for our existing

embedded systems5 and system design tech-

nology development,6 as well as a driver for

high-level multiprocessor platform methods

under development;

� a vehicle for long-term research in multi-

processor architecture exploration, design

tools, and methods;

� an open, easily accessible environment,

built with public-domain components as

much as possible; and

� a baseline from which designers can easily

derive realistic NPU architectures.

Figure 1 shows the StepNP platform. It con-

sists of three main frameworks: the application

software development platform, the NPU-archi-

tecture simulation platform, and the SoC tools

platform.

Application software platform
Our application software platform is a direct

port of MIT’s open source Click modular router

framework for the rapid development of

embedded routing-application software.7 We

chose it for its modularity, flexibility, and ease

of reconfiguration. Figure 1a shows sample

Click modules performing packet classification,

discarding, stripping, and queuing. These mod-

ules can be linked together to quickly create a

routing application. The StepNP architecture

platform includes a network-address translation

application that we developed using the Click

framework. This application emulates a virtual

host by capturing packets from the worksta-

tion’s physical Ethernet connection, perform-

ing network address translation algorithms, and

reinjecting the result on the Ethernet line.

Architecture platform
Commercial NPUs feature a wide range of

architectural styles, from fully software pro-

grammable to almost completely hardwired.

For the StepNP initial platform, or base platform,

we use a fully programmable architecture based

on standard RISC processors, and a simple inter-

connect. The base platform allows easy plug-

and-play replacement with more specialized

processors, coprocessors, and interconnect.

We wanted the StepNP modeling approach

to support easy integration of debugging and

analysis tools, as well as top-down verification

methodologies. In particular, we concentrated

on the analysis of communication properties

between NPU building blocks, including inter-

face behavior, data throughput, and latencies.

As Figure 1b shows, the base platform includes

three main IP component types:

� processor engines (RISC-based architecture

models augmented with configurable hard-

ware multithreading capability and a simple

n-stage pipeline),

� a network-on-a-chip communication channel

(in this case, a high-level split-transaction

channel model), and

� specialized coprocessors (in this case, a sem-

aphore engine as a demonstration coproces-

sor).

The architecture platform includes a

coprocessor I/O port. We also integrated a

model of a network-packet search engine

coprocessor in the architecture platform; this

model is for STMicroelectronics’ internal use

and is not part of the base platform.

SoC tools platform
The SoC tools platform provides two main

categories of tools:

Platform-Based Design of SoCs

18 IEEE Design & Test of Computers

� component level (embedded-software-devel-

opment tools for the individual processors

used in StepNP, including a C compiler, an

instruction-set simulator, and a source-level

debugger), and

� SoC level (tools for controlling, debugging,

and analyzing the top-level multiprocessor

architecture).

The SoC-level tools allow visualization and

control of the model’s execution from various

perspectives (programming, logical, temporal,

19November–December 2002

(a)

(b)

(c)

Pipeline stages

RISC

P1

Pn

RISC

P1

Pn

RISC

P1

Pn

Threads

Interfaces

Network on a chip

Coprocessor
I/O port

Network
search
engine

Semaphore
engine

Packet
input

MIT Click router

Classifier
Random

early
detection

Discard

Strip

Thread switch

Queue

Figure 1. StepNP overview: application software development platform (a), NPU-

architecture simulation platform (b), and SoC tools platform (c).

spatial, and user-defined) for a range of abstrac-

tion levels (functional, transaction, and cycle-

based). The programming perspective is a

multiprocessor version of a conventional

source-level debugger. The logical perspective

lets the user track a single packet’s processing

logically, even though the processing is distrib-

uted over multiple processor, interconnect, and

hardware resources. The logical view is a nat-

ural extension of the programming perspective.

The temporal perspective lets the user visu-

alize parallel activities on a time line. The time

line can represent various abstraction levels—

for example, the name of the top-level C func-

tion running on a processor at a given time, or

the signal value on a bus.

The spatial perspective allows event track-

ing in a hierarchical block diagram. StepNP

automatically extracts the graphical represen-

tation of the hierarchy from the model via an

introspective application programming inter-

face described later. Finally, well-defined APIs

that allow easy connection of scripting lan-

guages or graphical environments enable user-

defined perspectives, a key requirement for

STMicroelectronics’ customers.

StepNP architecture simulation
platform

Now we take a closer look at the architec-

ture simulation platform and its three IP com-

ponent types.

Modeling language
We chose SystemC 2.0 (http://www.

systemc.org), with its wide range of modeling

abstraction capability, as the StepNP architec-

ture platform’s main modeling language.

Where appropriate, we also included more-

specialized languages—for example, Tool

Command Language (Tcl) for user scripts and

Java/Forte for graphical user interfaces and

user-defined extensions.

Multithreaded processor model
The base StepNP architecture platform

includes the public-domain models of the ARM

v4 and the PowerPC (versions 603, 603a, and

604) instruction-set architectures (http://www.

fsf.org) and the Stanford DLX processor model.8

Our approach is to encapsulate functional

instruction-set models into a SystemC wrapper.

The encapsulation produces a cycle-based

model implementing a configurable hardware

multithreading capability and a simple n-stage

pipeline.

Each thread in the SystemC processor wrap-

per calls the instruction-set simulator (ISS) to

implement the thread instructions. The wrap-

per interleaves the sequencing and timing of

these calls to model the execution of a hard-

ware-multithreaded processor. The ISS returns

memory reference operations to the wrapper

for implementation in SystemC. The wrapper

communicates with the rest of the StepNP plat-

form via the SystemC Open Core Protocol

(SOCP) communication channel interface

described later.

For research teams interested in network-spe-

cific instruction-set optimizations, we are plan-

ning to integrate Xtensa configurable processor

models from Tensilica (http://www.tensilica.

com) and models from the LisaTek instruction-

set simulation model generator toolset (http://

www.lisatek.com). These models will help

researchers explore a wide range of possible

instruction-set architectures.

Coprocessors
Users can easily integrate new coprocessor

models into StepNP, using the SOCP commu-

nication channel interface. Currently, the base

platform includes a semaphore engine model

that allows concurrency management in the

processor array.

The network search engine is a pipelined

SRAM-based solution to the lookup and classi-

fication problems. It also aids virtual private net-

working. This solution uses significantly lower

cost and power than a component based on

content-addressable memory with built-in table

management. The StepNP platform serves as a

validation environment for this search engine

during the architecture design phase. Later, it

serves as a reference platform for customers.

Communication channel
The interconnect model developed in the

base StepNP platform is a simple functional

model supporting split-transaction communi-

Platform-Based Design of SoCs

20 IEEE Design & Test of Computers

cation. We gave the communication channel’s

interface definition particular attention, and we

describe it in the next section.

We are planning to integrate other intercon-

nect technologies into StepNP: STMicro-

electronics’ Octagon4 network on a chip and

LIP6’s (Laboratoire d’Informatique de Paris 6)

SPIN network on a chip (http://www-asim.

lip6.fr/cerme/presentations_28_01.html).

Communication channel interface
Our goal was a standardized interface that

would let users plug in and play SoC IP com-

ponents at various abstraction levels.

Requirements
The following requirements motivated the

StepNP communication channel interface’s

design:

� The interface must operate at the functional

and transaction levels. The interface should

contain no bit-level signals, polarities, clock

cycles, or detailed timing. This requirement

does not preclude an adapter that, for exam-

ple, maps the interface to a cycle-accurate

internal model.

� The interface-modeling approach should use

SystemC 2.0 constructs in a manner as close

as possible to their original intent. In other

words, the communication between master,

channel, and slave should use the SystemC 2.0

port, interface, and channel methodology.

� The interface should make no assumptions

about the underlying interconnect architec-

ture. It must support anything from a simple

point-to-point connection to an arbitrarily

complex, multilevel network on a chip.

� The interface must support split transactions

and should not assume that requests and

responses are atomic.

� It must support multithreaded masters and

slaves.

� If possible, the interface should be compati-

ble with existing interfaces designed for IP

reuse.

SOCP channel interface
We developed the SOCP channel interface

model using the SystemC 2.0 language. The

model follows the same high-level semantics as

the Open Core Protocol (OCP) and the Virtual

Component Interface (VCI) but has no notion

of signals or detailed timing. For transaction-

level modeling, these standards (http://www.

ocpip.org and http://www.vsi.org) can be con-

sidered functionally identical, and we refer to

them interchangeably. Our modeling approach

has the following advantages:

� The SOCP channel interface model can

inherit semantics of parameters and behav-

ior largely from the OCP/VCI specification.

� The StepNP user can refine the SOCP to

transform it to an OCP/VCI lower-level inter-

face or to other interconnect implementa-

tions, such as industry-standard buses or

complex networks on chips.

� The channel interface model achieves high-

er simulation speeds than OCP/VCI or bus-

level channel implementations because of

its higher abstraction level.

Master-slave interface. The OCP standard

uses unidirectional connections between com-

ponents, with one side driving the signals and

the other receiving. For the SOCP interface, we

model this unidirectional connection in

SystemC, using a port and an interface. The dri-

ving end sends data to the receiving end

through the port. The receiving end implements

the port interface.

OCP has one unidirectional interface for

sending requests and another unidirectional

interface for receiving responses. It allows

single- or split-transaction channel implemen-

tations. Requests can be pipelined, and re-

sponses can come back out of order in some

situations.

The SOCP interface used by the master for

sending a request is expressed in SystemC as

virtual void putReq(InterfaceData

&data)=0;

The interface used by the slave for its response

is similarly expressed:

virtual void putRsp(InterfaceData

&data)=0;

21November–December 2002

The SOCP allows a direct connection

between master and slave, without an interven-

ing channel. This capability is a good test of inter-

face symmetry and correctness. An SOCP

channel must implement both master and slave

interfaces and supply ports with these interfaces.

Interface data. The data crossing the SOCP

interface is essentially the same as that defined

in OCP but is expressed in a C++ structure.

However, we omitted OCP signals related to

low-level handshaking of data across the inter-

face because they are at a lower abstraction

level. Table 1 lists the interface data with brief

descriptions (the OCP specification gives more

details). The table follows the convention that

data the master sends to the slave starts with

“M,” and data the slave sends to the master

starts with “S.”

Extending OCP semantics for high-level
modeling

Although we followed the base OCP and VCI

semantics, the SOCP needed selective extensions

for functional- and transaction-level modeling.

Burst transfers. Data crosses an OCP interface

one word at a time. In SOCP, however, we also

allow a complete burst transaction in one put

request. We do this by specifying an additional

length parameter with a value greater than one

and allowing pointers for the address-, data-,

and byte-enable parameters. We assume that

the other parameters are constant for each data

item of the transfer, except for the MBurst para-

meter, which needn’t be set by the master.

However, a cycle-accurate adapter on the other

side of the interface can choose to feed the

data into a lower-level internal model and gen-

erate the burst signal for each word as appro-

priate. The SOCP interface requires the

response length to match the request length.

Blocking semantics. Calls across an SOCP

interface can block the caller. Therefore, the

caller should be a SystemC thread construct

(SC_THREAD). If a slave IP component blocks

a put request from a channel, however, the

channel could be blocked until the request is

serviced. Therefore, if channel blocking is an

issue, slave IP components should avoid block-

ing a put request (by using the SThreadBusy

back-pressure mechanism or by buffering

requests). The same applies to a response from

the slave (or channel) to the master.

It is possible to implement both master and

Platform-Based Design of SoCs

22 IEEE Design & Test of Computers

Table 1. OCP signal definitions.

Data field Description

MConnID A connection identifier—a number that uniquely identifies a component.

MThreadID A thread identifier that assists with multithreaded IP components, memory consistency, and out-of-order

responses.

MthreadBusy A hint to the slave IP component indicating which master threads are busy and cannot accept responses.

MAddrSpace Allows access to different address spaces in the slave such as registers and memory.

MCmd Identifies the nature of the requested transaction. Values denote commands such as read, write, and read

exclusive.

MBurst Assists in the flow of burst data across the interface.

MAddr, MAddrPtr The data’s address. We extend this parameter in the SOCP interface to make it a pointer to an array of values

as well as a scalar value. The array option is for burst transfers.

MData, MDataPtr The data itself. We extend this in SOCP to make it a pointer to an array of values as well as a scalar. The array

option is for burst transfers.

MByteEn, MByteEnPtr Byte enables, for selective byte writes. We extend this in SOCP to make it a pointer to an array of values as well

as a scalar. The array option is for burst transfers.

SResp Slave response code, indicating whether data is correct or an error has occurred.

SThreadID Pairs the slave’s response with the thread in the master that made the request.

SThreadBusy A hint to the master, indicating threads that are busy in the slave.

slave in a purely functional manner. If a purely

functional channel model is used, some mech-

anism should be provided in the channel to

schedule new threads; otherwise, one master

will dominate the simulation, and no other

threads will run.

Adapters and refinement. The SOCP supports

refinement on either side of the interface and

plug-and-play component replacement at vari-

ous abstraction levels. For example, a purely

functional master could use a pin- and cycle-

accurate model on the other side of the SOCP

interface. Cycle-accurate models on both sides

are also possible if put requests and responses

occur on a word-by-word basis. The master

could also set the burst parameters to the

appropriate values for accurately modeling

data-streaming across the interface.

IP components modeled in a functional style,

with requests and responses referring to data

blocks, should work with a cycle-accurate chan-

nel model. To feed the internal model, the chan-

nel model would need an adapter to translate

the data in the requests into low-level signals.

The adapter should translate low-level respons-

es back into the format in which the master

received them. For example, a request that spec-

ified a data block should have a response cor-

responding to that block. However, the channel

adapter could feed the slave on a word-by-word

basis, even if the master request was a block.

Profile support. The SOCP master-slave inter-

faces are template classes and can take user-

specified address and data type parameters to

support OCP-like profiles (basic, simple exten-

sions, and complex extensions).

An IP component can choose to use a sub-

set of the data (for example, only 11 bits of the

address field), with the plug-and-play operation

rules defined by the standard.

SOCP performance
To evaluate the SOCP modeling approach,

we performed two tests. The nullModem test

uses a simple functional master, which gener-

ates read and write requests, and a simple func-

tional memory as the slave. The master plugs

directly into the slave with no intervening chan-

nel. The funcTest has the same master and slave

components as nullModem but introduces a

simple functional implementation of an SOCP

channel. The funcTest creates eight master com-

ponents and eight slave components. The chan-

nel has a simple time-accounting model, in

which transactions are delayed every n calls, for

time t (n and t are channel parameters).

Table 2 shows the results of these tests. The

reads and writes referred to in the table are

complete master-slave transactions, consisting

of four atomic transactions (master to channel,

channel to slave, slave response back to chan-

nel, and channel response back to master). We

obtained these results using the public-domain

SystemC 2.0 class library on a Solaris Sun work-

station running Unix and a PC running Linux.

In the table, “TAn” indicates that transaction-

time accounting occurred every n transactions.

On the Solaris platform, this parameter made a

big difference in simulation speed (a factor of

5 between TA1 and TA100). Under Linux, this

parameter had no effect on performance.

Distributed simulation using SOCP
A benefit of a well-defined communication

interface is that it can serve as the basis for par-

titioning the SystemC simulation model over

multiple workstations. To achieve this capabil-

ity in StepNP, we implemented an SOCP chan-

nel called dsim that allows distributed

simulation over a pool of workstations. The mas-

ters and slaves plug into the dsim channel with-

out any changes. The channel implementation,

however, is aware of the workstations involved

in the simulation and of the components’

addresses and identifiers. If a master sends a

request to a local slave, the transaction com-

23November–December 2002

Table 2. Performance of functional SOCP channel.

Read/write rate Read/write rate

(millions per second) (millions per second)

on Solaris Sun U80 on Linux PC (Pentium 3

Test at 450 MHz at 800 MHz)

nullModem 2,000 1,745

funcTest TA1 248 1,530

funcTest TA10 903 1,530

funcTest TA100 1,220 1,530

pletes in much the same way as the functional

channel. However, if the slave is on another

workstation, the channel implementation pack-

ages the request and sends it over the network

to the destination slave. In this approach, either

the communication rate or the slowest distrib-

uted SystemC model component limits the over-

all simulation speed.

We measured communication rates of about

30 kHz using the dsim channel implemented

with the transmission-control and Internet pro-

tocols (TCP/IP) over a standard 100-Mbit Ether-

net line. In cooperation with researchers at the

University of Montreal, we are working on opti-

mizing the implementation for higher-perfor-

mance interconnects, using the

Myrinet network, which runs an

order of magnitude faster.

Model control-and-view
support framework

Designers and programmers

using StepNP need to debug, verify,

understand, initialize, and measure

the platform model’s execution.

This diversity of uses requires a

robust methodology for controlling

and viewing models.

In most cases, the control-and-

view components are parts of a

process separate from the model

itself and are often implemented in

another language. For example,

scripting languages such as Tcl are

often used to automate verification.

A typical verification scenario could

have a script that populates the rout-

ing table in the model with known

values and then injects packets into

a network device in the model. The

script would then start the model

execution and examine the emitted

packet for correct header values

and processing latency.

Given the control-and-view

requirements, StepNP supports the

introspective approach illustrated

in Figure 2. An external control-and-

view component—for example, the

SoC tools platform—connects to

the model’s access API. This component can

query the model’s structure, discover compo-

nents the model uses, and discover the support-

ed interfaces to these components. In Figure 2,

the external SoC tool component has discovered

a SystemC probed signal between two slave

model subcomponents, A1 and A2. The StepNP

control-and-view framework automates much of

this process.

SystemC structural introspection
SystemC provides an API for traversing the

model’s structural hierarchy. The access API

enhances this basic support and builds a struc-

tural representation of the model.

Platform-Based Design of SoCs

24 IEEE Design & Test of Computers

Master

MIT Click
router

SoC
tools

platform

C++ Tcl Java

Access API Access API Access API

SIDL ICE interface

ICE socket

SIDL probe interface

Slave

SOCP
channel

A1

A2

(a)

(d)

(b) (c)

Port Interface Probe

API
ICE

SIDL
SOCP

Application programming interface
In-circuit emulator
SystemC Interface Definition Language
SystemC Open Core Protocol

Figure 2. StepNP control-and-view methodology: application software

development platform (a), performance analysis tool (b), SoC tools platform

(c), and SystemC model (d).

Low-level signals (such as objects of type

sc_signal) and simple state representations can

use a StepNP-supplied probe class. This probe

class extends signals and state representation

variables with functionality that connects to exter-

nal control-and-view components. These com-

ponents can use this functionality to discover the

model’s signals and probed state and to recover

the time history as needed. They can also use the

probe class for automating sc_trace control, for

custom dumps, or for other functions.

SIDL interface
For software written using high-level SystemC

2.0 modeling facilities, automatically extracting

state information and allowing control access

are more difficult. Therefore, we developed an

instrumentation methodology and an associat-

ed language called the SystemC Interface

Definition Language. An SIDL interface allows

external control-and-view components written

in various languages to access a SystemC model

object implementing this interface.

SIDL looks much like a pure virtual C++ class

and is patterned after the sc_interface

approach in SystemC. For example, the SIDL

interface to a simple counter could be

class CounterCandV {

public:

virtual int getCount() = 0;

virtual int setCount(int) = 0;

};

An SIDL compiler parses an SIDL header file

and produces all the client-server glue. The glue

on the server end connects an object imple-

menting this interface to the low-level access

API. The compiler produces the client-end glue

in the desired language (for example, Java,

C++, or Tcl). The function parameters can be

basic types (integers, floats, strings, and so

forth), structures, or vector containers of these

types. The SIDL compiler handles all marshal-

ing and remote procedure call issues.

In the CounterCandV example, a counter

in the SystemC model needs only to inherit the

server instance of this class (Counter-

CandVServer) generated by the compiler

and implement the getCount and

setCount methods.

The client can call the access API in the serv-

er to discover all control-and-view interfaces

and the names of these instances. For example,

a client might find that the model supports a

CounterCandV object, named counter0.

The client can then create a

CounterCandVClient object, supplying

the name counter0 to the constructor. The

client can then call the getCount and

setCountmethods of this object, which trans-

parently calls the getCount and setCount

methods in the corresponding SystemC object.

At one level, SIDL looks like a distributed

object model such as the Common Object

Request Broker Architecture (CORBA).

However, SIDL is more restricted in scope than

CORBA, follows the interface style of SystemC,

and is integrated in the SystemC environment.

Instrumentation of an SOCP socket with
SIDL

It is possible to develop generic control-and-

view interfaces for common master and slave

components, such as processors and memo-

ries. However, the instrumentation of an SOCP

interface is of particular interest because instru-

mentation tools developed for an SOCP inter-

face can be used with any IP block.

An IP block with an SOCP interface can be

plugged into an object whose function is anal-

ogous to an in-circuit emulator (ICE) socket,

with no change of the channel object or the

device under test, as illustrated for the master

module in Figure 2. The abstract ICE socket can

transparently pass master requests and slave

responses. However, external software can

monitor or generate the transactions using an

SIDL interface. The ICE socket can also perform

transaction recording and store the transactions

in a trace file for viewing by standard CAD tools

or, as Figure 2b shows, by more specialized SoC

performance analysis tools such as

STMicroelectronics’ FlexPerf5 and SysProbe.6

WITHIN THE NEXT YEAR, we plan to make the

base StepNP platform available as a public-

domain environment accessible to the research

community. In this endeavor, STMicroelectronics

25November–December 2002

will partner with the Canadian Microelectronics

Corporation to benefit from its experience in

large-scale university interaction and infrastruc-

ture support (http://www.cmc.ca).

We also plan to integrate new processors,

with instruction sets tuned to networking appli-

cations, and a selection of network-on-a-chip

interconnects into StepNP. Finally, we will devel-

op a more extensive set of networking applica-

tions, derived from the MIT Click modular-router

environment. This set of applications will give

STMicroelectronics and its research partners a

valuable network-processing reference platform

for developing new multiprocessor design and

automation methodologies. �

References
1. N. Shah, Understanding Network Processors,

internal report, Dept. of Electrical Eng. and Com-

puter Science, Univ. of California, Berkeley, 2001;

http://www-cad.eecs.berkeley.edu/~niraj/papers/

UnderstandingNPs.pdf.

2. P.G. Paulin, F. Karim, and P. Bromley, “Network

Processors: A Perspective on Market

Requirements, Processor Architectures and

Embedded S/W Tools,” Proc. Design, Automation,

and Test in Europe (DATE 01), IEEE CS Press,

Los Alamitos, Calif., 2001, pp. 420-429.

3. L. Benini and G. De Micheli, “Networks on Chip: A

New SoC Paradigm,” Computer, vol. 35, no. 1,

Jan. 2002, pp. 70-72.

4. F. Karim et al., “On-Chip Communication Architec-

ture for OC-768 Network Processors,” Proc.

Design Automation Conf. (DAC 01), ACM Press,

New York, 2001, pp. 678-683.

5. P.G. Paulin and M. Santana, “FlexWare: A Retar-

getable Embedded-Software Development Envi-

ronment,” IEEE Design & Test of Computers, vol.

19, no. 4, July-Aug. 2002, pp. 59-69.

6. A. Clouard et al., “Towards Bridging the Gap

between SoC Transactional and Cycle-Accurate

Levels,” Proc. Design, Automation, and Test in

Europe Designer Forum, DATE Conf. Secretariat,

Edinburgh, UK, 2002, pp. 22-29.

7. E. Kohler et al., “The Click Modular Router,” ACM

Trans. Computer Systems, vol. 18, no. 3, Aug.

2000, pp. 263-297.

8. J.L. Hennessy et al., Computer Architecture: A

Quantitative Approach, Morgan Kaufmann, San

Mateo, Calif., 1990.

Pierre G. Paulin is the
director of the System-on-
Chip Platform Automation
Group at STMicroelectronics,
Ottawa, Ontario, Canada.
His research interests in-

clude design automation technologies for multi-
processor systems, embedded systems, and
system-level design. Paulin has a BSc and an
MSc in engineering physics and electrical engi-
neering from Laval University, Quebec City, and
a PhD in electronics engineering from Carleton
University, Ottawa. He is a member of the IEEE.

Chuck Pilkington is a
senior staff engineer in the
System-on-Chip Platform
Automation Group at
STMicroelectronics. His
research interests include

hardware modeling and system software for
high-performance parallel processing. Pilking-
ton has a BSc in physics from the University of
Waterloo, Ontario, and an MSc in electrical engi-
neering from the University of Toronto.

Essaid Bensoudane is a
research-and-development
engineer in the System-on-
Chip Platform Automation
Group at STMicroelectronics.
His research interests in-

clude system simulation and high-level system
design and analysis. Bensoudane has a BSc
from l’Institut Polytechnique de Grenoble, France,
and an MSc in automation and systems engi-
neering from l’École Polytechnique, Montreal.

Direct questions and comments about this
article to Pierre G. Paulin, STMicroelectronics,
Central R&D, SoC Platform Automation, 16
Fitzgerald Rd., Suite 100, Nepean, Ontario, K2H
8R6, Canada; pierre.paulin@st.com.

For further information on this or any other comput-

ing topic, visit our Digital Library at http://computer.

org/publications/dlib.

Platform-Based Design of SoCs

26 IEEE Design & Test of Computers

