Analysis of Nature-Inspired Algorithms for Long-Term Digital Preservation

Andres El-Fakdi, Josep Lluis de la Rosa
2021 Mathematics  
Digital preservation is a research area devoted to keeping digital assets preserved and usable for many years. Out of the many approaches to digital preservation, the present research article follows a new object-centered digital preservation paradigm where digital objects share part of the responsibility for preservation: they can move, replicate, and evolve to a higher-quality format inside a digital ecosystem. In the new framework, the behavior of digital objects needs to be modeled in order
more » ... to obtain the best preservation strategy. Thus, digital objects are programmed with the mission of their own long-term self-preservation, which entails being accessible and reproducible by users at any time in the future regardless of frequent technological changes due to software and hardware upgrades. Three nature-inspired computational intelligence algorithms, based on the collective behavior of decentralized and self-organized systems, were selected for the modeling approach: multipopulation genetic algorithm, ant colony optimization, and a virus-based algorithm. TiM, a simulated environment for running distributed digital ecosystems, was used to perform the experiments. The results map the relation between the models and the expected object diversity obtained in short- and mid-term digital preservation scenarios. Comparing the results, the best performance corresponded to the multipopulation genetic algorithm. The article aims to be a first step in the digital self-preservation field. Building nature-inspired model behaviors is a good approach and opens the door to future tests with other AI-based methods.
doi:10.3390/math9182279 fatcat:jtceriev5bcn3i34sxakundfgi