Radar Data Analyses for a Single Rainfall Event and Their Application for Flow Simulation in an Urban Catchment Using the SWMM Model

Mariusz Barszcz
2018 Water  
The disadvantage of radar measurements is that the obtained rainfall data is imprecise. Therefore, the use of radar data in hydrological applications usually requires correction. The main aim of the study was to verify and optimize various methods of estimating the rainfall depths for single events based on radar data, as well as determining their influence on the values of peak flow and outflow volume of hydrographs simulated using the SWMM (Storm Water Management Model) hydrodynamic model.
more » ... ression analyses were used to find a relationship between the rain gauge rainfall rate R and radar reflectivity Z for the urban catchment of the Służewiecki Stream in Warsaw, Poland. Five methods for determining calculational values of radar reflectivity in reference to specific rainfall cells with 1 km resolution within an event duration were applied. Moreover, the correction coefficient for data from the SRI (Surface Rainfall Intensity) product was established. The Z-R relationships determined in this study offer much better rainfall rate estimation as compared to Marshall-Palmer's relationship. Different scenarios were applied to investigate the stream response to changes in rainfall depths estimated on the basis of radar data, in which the data both for 2 existing, as well as 64 virtual, rain gauges assigned to appropriate rainfall cells in the catchment were included. Relatively good agreement was achieved between the measured parameters of the hydrograph of flows and those simulated in response to rainfall depths which had been calculated for single events using the correction coefficient and the determined Z-R relationships. Radar estimates of rainfall depths based on the tested methods can be used as input data to the SWMM model for the purpose of simulating flows in the investigated urban catchment.
doi:10.3390/w10081007 fatcat:ttuijrclwveqje25nfdwhyajcm