Context-Aware Location Recommendation Using Geotagged Photos in Social Media

Haosheng Huang
2016 ISPRS International Journal of Geo-Information  
Recently, the increasing availability of digital cameras and the rapid advances in social media have led to the accumulation of a large number of geotagged photos, which may reflect people's travel experiences in different cities and can be used to generate location recommendations for tourists. Research on this aspect mainly focused on providing personalized recommendations matching a tourist's travel preferences, while ignoring the context of the visit (e.g., weather, season and time of the
more » ... y) that potentially influences his/her travel behavior. This article explores context-aware methods to provide location recommendations matching a tourist's travel preferences and visiting context. Specifically, we apply clustering methods to detect touristic locations and extract travel histories from geotagged photos on Flickr. We then propose a novel context similarity measure to quantify the similarity between any two contexts and develop three context-aware collaborative filtering methods, i.e., contextual pre-filtering, post-filtering and modeling. With these methods, location recommendations like "in similar contexts, other tourists similar to you often visited . . . " can be provided to the current user. Results of the evaluation with a publicly-available Flickr photo collection show that these methods are able to provide a tourist with location recommendations matching his/her travel preferences and visiting context. More importantly, compared to other state-of-the-art methods, the proposed methods, which employ the introduced context similarity measure, can provide tourists with significantly better recommendations. While Flickr data have been used in this study, these context-aware collaborative filtering (CaCF) methods can also be extended for other kinds of travel histories, such as GPS trajectories and Foursquare check-ins, to provide context-aware recommendations.
doi:10.3390/ijgi5110195 fatcat:vv5hvrogl5drll4z2kgxi3zza4