A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2018; you can also visit the original URL.
The file type is application/pdf
.
Optimal Cruciform Specimen Design Using the Direct Multi-search Method and Design Variable Influence Study
2017
Procedia Structural Integrity
During their operation, modern aircraft engine components are subjected to increasingly demanding operating conditions, especially the high pressure turbine (HPT) blades. Such conditions cause these parts to undergo different types of time-dependent degradation, one of which is creep. A model using the finite element method (FEM) was developed, in order to be able to predict the creep behaviour of HPT blades. Flight data records (FDR) for a specific aircraft, provided by a commercial aviation
doi:10.1016/j.prostr.2017.07.037
fatcat:cuv2y5wxuvb65ljvxibmwacjme