SOFC Durability against Standby and Shutdown Cycling

M. Hanasaki, C. Uryu, T. Daio, T. Kawabata, Y. Tachikawa, S. M. Lyth, Y. Shiratori, S. Taniguchi, K. Sasaki
2014 Journal of the Electrochemical Society  
To simulate realistic operating conditions in SOFC systems, we investigate the influence of thermal cycling on the performance of electrolyte-supported planar SOFCs. Thermal cycling is often associated with interruption of fuel supply, with three main modes; hot standby, cold standby, and shutdown. Cell performance degradation is most significant during shutdown cycles. Nickel oxidation and agglomeration are more pronounced when SOFCs are subjected to lower temperatures for longer periods of
more » ... e, leading to significant performance degradation. Ostwald ripening at the anode leads to degradation as Ni grains increase in size with cycling. Ni particle precipitation on the anode zirconia grains and along electrolyte grain boundaries is found for the first time in shutdown cycling tests. When H 2 S is mixed with the fuel, the internal reforming reactions and electrode reactions are inhibited by sulfur poisoning of the Ni anodes, accelerating degradation. The SOFC cycling degradation mechanisms are discussed in detail.
doi:10.1149/2.0421409jes fatcat:w5xge7ybjvdhhlpeyvoc3vr5ym