Ripple Attenuation for Induction Motor Finite Control Set Model Predictive Torque Control Using Novel Fuzzy Adaptive Techniques

Zhihui Zhang, Hongyu Wei, Wei Zhang, Jianan Jiang
2021 Processes  
Finite control set model predictive torque control (FCS-MPTC) strategy has been widely used in induction motor (IM) control due to its fast response characteristic. Although the dynamics of the FCS-MPTC method are highly commended, its steady-state performance—ripple deserves attention in the meantime. To improve the steady-state performance of the IM drives, this paper proposes an improved FCS-MPTC strategy, based on a novel fuzzy adaptive speed controller and an adaptive weighting factor,
more » ... ighting factor, tuning strategy to reduce the speed, torque and flux ripples caused by different factors. Firstly, a discrete predicting plant model (PPM) with a new flux observer is established, laying the ground for achieving an FCS-MPTC algorithm accurately. Secondly, after analyzing the essential factors in establishing a fuzzy adaptive PI controller, with high ripple suppression capacity, an improved three-dimensional controller is designed. Simultaneously, the implementation procedures of the fuzzy adaptive PI controller-based FCS-MPTC are presented. Considering that a weighting factor must be employed in the cost function of an FCS-MPTC method, system ripples increase if the value of the weighting factor is inappropriate. Then, on that basis, a novel fuzzy adaptive theory-based weighting factor tuning strategy is proposed, with the real-time torque and flux performance balanced. Finally, both simulation and hardware-in-loop (HIL) test are conducted on a 1.1 kW IM drive to verify the proposed ripple reduction algorithms.
doi:10.3390/pr9040710 fatcat:7qskqomstzafno5qzkrw6u7oey