
Accessibility requirements for
systems design to
accommodate users with
vision impairments

&

P. Brunet

B. A. Feigenbaum

K. Harris

C. Laws

R. Schwerdtfeger

L. Weiss

New technology tends to be inaccessible to people with disabilities. Accessibility

features are frequently added as the technology matures; doing so late in the cycle

incurs significant costs. The initial omission of accessibility features often results from

systems designers’ lack of insight into accessibility requirements. This paper discusses

accessibility requirements for accommodating users with vision impairments from the

complementary perspectives of the systems architect, the assistive technology

developer, and the application developer. The paper concludes with a historical

perspective of the evolution of the current Windowse accessibility features and gives

insight into future industry directions.

INTRODUCTION

An accessible information technology (IT) solution

is one that is usable by all people, regardless of

ability or disability. Although industry awareness of

end user accessibility needs is increasing, inacces-

sible IT solutions continue to be delivered. Often,

new technologies fail to address accessibility from

the beginning of their development.

Typically, a platform is initially specified and

delivered without any support for accessibility. In

past years, this happened with IBM OS/2*, Micro-

soft Windows**, Java**, and the visual presenta-

tion systems for the Linux** platforms. In each case,

accessibility support was added to the systems

architecture as a remedial activity,
1

generally years

after the initial releases. Addressing accessibility late

in development is costly, and in the interim, the

absence of a solid foundation contributes to inter-

operability issues between the platform, assistive

technology (AT) products, and application software.

One root cause of inaccessibility is that software

designers lack insight into the fundamental re-

quirements of building accessible solutions. IBM is

one of the few companies that have developed both

accessibility infrastructures and assistive technolo-

gies on a broad range of platforms.
2

As past and

�Copyright 2005 by International Business Machines Corporation. Copying in
printed form for private use is permitted without payment of royalty provided
that (1) each reproduction is done without alteration and (2) the Journal
reference and IBM copyright notice are included on the first page. The title
and abstract, but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and other
information-service systems. Permission to republish any other portion of the
paper must be obtained from the Editor. 0018-8670/05/$5.00 � 2005 IBM

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005 BRUNET ET AL. 445

present members of the IBM Accessibility Center,

the authors have a unique perspective on the

requirements which the various IT communities

must satisfy in order to deliver accessible IT

solutions.

This paper presents requirements for accommodat-

ing people with visual disabilities and addresses

non-visual user interfaces from several perspectives,

including that of the systems architect, the assistive

technology developer, and the application devel-

oper. We limit the scope of our discussion to the

requirements driven by vision impairments in order

to explore these requirements in greater depth. The

graphical user interface (GUI) is the dominant

human-computer interaction paradigm in today’s IT

environment. The expressiveness of the GUI is so

rich, and the medium is so vision-oriented, that

extraordinary efforts are required to translate this UI

paradigm into other modalities.

COMPONENTS OF A COMPREHENSIVE
ACCESSIBILITY SOLUTION
Accessibility solutions can best be discussed by

dividing them into their components, which include

the platform accessibility architecture, the assistive

technology (including system accessibility features),

developer tools support, and the application.

Figure 1 illustrates the various software components

required to deliver an accessibility solution.

Platform accessibility architecture
In this paper, the term ‘‘platform’’ describes a

software runtime environment in which a software

application (made up of one or more executable

modules) can run. A platform defines a unique set of

application programming interfaces (APIs) and

execution protocols (such as the application’s

behavior for handling an event). For example, the

Microsoft Win32 API (available in Windows XP**)

defines one platform. Java Standard Edition defines

another platform, and Hypertext Markup Language

(HTML), Cascading Style Sheets (CSS), and Java-

Script** define yet other platforms. An application is

usually built specifically for each platform on which

it will execute.

Accessible platforms must provide a way for

applications to export information about their visual

user interface (UI) to assistive technology products,

and for AT devices to observe state changes in the UI

components. Additionally, they must provide de-

vice-independent access to applications. The pro-

gramming interfaces and communication protocols

associated with these facilities are generally known

as the platform accessibility architecture. Platform

architects carry the major responsibility for defining

this architecture.

Application, assistive technology, and system

accessibility features

In part, an accessible solution is created by enabling

an application for accessibility during product

design and development. This is analogous to

enabling an application for internationalization.

When an accessible application is deployed to

people with disabilities, the product is paired with a

complementary assistive technology, which pro-

vides alternative input and output mechanisms, to

create a complete solution. Examples of assistive

technology include screen readers that use text-to-

speech (TTS) engines to read software to people

who are blind, closed captioning displays for people

who are deaf or hard of hearing, and special

keyboards and input devices for people with limited

hand use or mobility impairments.

Figure 1
Software components of an accessibility solution

Assistive Technologies System Accessibility Features Developer Support Platform Accessibility API

Accessible Applications

BRUNET ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005446

An AT can only be effective when the software and

hardware with which it interfaces is accessible. For

example, a screen reader cannot read informational

graphic images on a Web page unless the Web page

author provides an alternative text (alt) attribute

for those images. If the alt attribute is missing, the

screen reader cannot provide meaningful informa-

tion about the image. Figure 2 illustrates this

point—the alt attribute in the IMG image tag enables

the AT to make the Web page accessible.

System accessibility features, such as Windows’

StickyKeys and high contrast color schemes, are a

special class of assistive technologies which a

platform must provide or provide access to, and

with which an application must be compatible. For

example, the Mozilla** browser and Java Swing**,

which run on multiple operating-system platforms,

both have provisions for responding to system font

and color settings. Swing has a pluggable ‘‘look and

feel’’ for Windows that allows standard Swing UI

components to respect Windows font and color

settings. Although early versions of the Java plat-

form did not, the platform now supports StickyKeys

for Java applications running on Windows.

Developer support

Enabling applications for accessibility can often be

both a tedious and error-prone activity. Developers

can easily overlook small details that need to be

addressed. As a result, support is needed to assist

the developer in producing an accessible solution.

Specifically, developers need guidelines, reusable

accessible controls, and authoring tools with sample

code. For example, Web developers need tools to

create accessible HTML and other Web content. The

World Wide Web Consortium’s
3

(W3C**) Web

Accessibility Initiative
4

(WAI) authoring-tools

working group
5

created the Authoring Tools Acces-

sibility Guidelines (ATAG) recommendation to

define what a Web content creation tool must do to

promote the creation of accessible Web content.

Developers need similar tools to assist in the

creation of accessible rich-client GUIs, such as GUIs

built using Java Swing
6

and the Eclipse Standard

Widget Toolkit (SWT).
7

For example, the IBM

Reflexive Interface Builder advanced technology
8

provides an accessibility validator feature that

detects potentially inaccessible GUIs built with

either Swing or SWT.

Prior and related work

Extensive work has been done in a number of

domains that relate to the subject matter of this

paper. Programming requirements and guidelines

for building accessible applications are published by

a number of organizations. The Trace Center at the

University of Wisconsin maintains a list of well-

written, representative publications at their Web

site.
9

IBM’s approach to capturing and enumerating

such guidelines can be found at http://

Figure 2
Accessibility solution for a Web page

Accessible
hardware and software

Assistive technology Accessible solution

Screen reader and Web browser

+

+

=

=

Author adds a
description to an image

Assistive technology describes
image to user with vision impairments

+

<html lang=”en”>
...
<img=”graceland.jpg”
ALT=”Image:
Graceland - Home of Elvis”>
...

2 9 0 - =85 63 4
@ () _ +*% ^# $

W E P {OY U IR T

A S : “LKJD

Z > ?>M <B

User has an accessible
solution

=

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005 BRUNET ET AL. 447

www-3.ibm.com/able/guidelines/index.html. Jacob

Nielsen has written guidelines specifically for Web-

based applications in Reference 10.

The insights captured in these guidelines are critical

to the successful delivery of an accessible applica-

tion. However, these guidelines generally rely on

underlying platform features which must be pro-

vided by the systems architects. Within this paper,

we have attempted to capture the fundamental

principles and features that the platform and AT

designers must address.

Accessibility is one component of the broader

domain of ‘‘universal usability,’’ which has been

described as ‘‘a focus on designing products so that

they are usable by the widest range of people,

operating in the widest range of situations, as is

commercially practical.’’
11

Many researchers in this

field have worked to capture requirements, as found

in Reference 11 and Reference 12. These works have

captured fundamental requirements from an end

user perspective, but provide less guidance on

software architectural constructs that must be built

into the operating system (or equivalent program-

ming platform such as the Java API) as a foundation

for the needed user interface features.

We believe that this paper is unique in treating these

fundamental principles from the systems program-

ming perspective. While there are works which

discuss system API sets or features within the

domain of a specific platform (such as HTML or a

single operating system such as Linux
13

), we are not

aware of recent work which assesses the funda-

mental software architectural requirements that

must be consistently met, regardless of the specific

programming platform used.

THE NEED TO ACCESS SEMANTIC INFORMATION

Visual user interfaces have traditionally focused on

how information is presented on a display, with

little regard for making the underlying information

of an application available through alternative

programming interfaces. Consider a GUI that

presents an image of a bar chart. In that image, there

is no information about the meaning of the various

bars in the chart and their values; the image is just

an array of pixels. The term semantic information

refers to the underlying information in an applica-

tion, as opposed to the presentation of that

information. It is essential to maintain semantic

information separately from the visual presentation

and to make the semantic information accessible

through programming interfaces.
11,12,14

Capturing semantic information may be easier when

only character I/O technology is employed. Char-

acter I/O consists of plaintext content, often limited

in scope (such as an 80325 grid). Examples include

the command-line interface provided by most

operating systems, where old content scrolls off the

screen. In this environment, the AT is frequently

able to directly observe the encoded character data.

If the application consists simply of prompts and

responses, all the semantics of the interface are

encoded in these text strings. The AT does not need

to perform any additional interpretation of this

information; rather, the text strings can simply be

presented through an alternate physical interface

such as a Braille device.

User interfaces that exploit a graphical paradigm are

not as easy to deal with. The physical medium for

these interfaces consists of a grid of pixels (often

quite large, such as 10243768) on which content is

drawn. Text content is rasterized into a small grid of

pixels, but other content, such as images, is

displayed directly. No restrictions are imposed on

font size or content position. Unlike character I/O

interfaces, the encoding of the character strings may

not be available to the AT. In this environment, an

assistive technology must capture information

drawn on the screen and attempt to reverse-engineer

the text and semantics
15

if that facility is available.

GUIs (or character I/O interfaces which emulate a

graphical paradigm) can be quite complex. In

addition to traditional components, such as images,

buttons, lists, tables, and trees, GUIs now incorpo-

rate multimedia content, such as sounds, music,

videos, and conference calls. Assistive technologies

must be able to present this content in a form

acceptable to the user, regardless of the user’s

abilities. This places a higher burden on the

application and content developer to provide addi-

tional semantic information about the content and

its presentation and on the accessibility framework

to make it available through programming inter-

faces.

Often assistive technologies have difficulty in

presenting a high-fidelity alternate user interface.

Although many reasons exist for this, the most

BRUNET ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005448

significant one is that the GUI focuses on how it

must present information rather than on exposing

the appropriate content and semantics to an

assistive technology that provides alternative ren-

derings.

In our initial bar-chart example, the graphic

provided no information about the meaning of the

various bars in the chart; the image was simply an

array of pixels. The chart was probably created from

information in a spreadsheet or database table. If the

assistive technology had access to this spreadsheet

or database, rather than only the image generated

from it, the assistive technology could provide an

alternative rendering of the data appropriate for the

accessibility needs of the user.

State-of-the-art design for accessibility today is

based on a Model-View-Controller (MVC) design

pattern
16

that allows developers to store valuable

semantic meta-data without a UI dependency and

that lays the foundation for exposing this informa-

tion to assistive technologies. In the next section, we

review the MVC design pattern and explore its

applicability to the design of accessible solutions.

The MVC design pattern

The MVC architecture is a classic approach for a

variety of interactive applications. It separates the

tasks of maintaining an application’s internal model

from the tasks of presenting a user interface and

processing user input and output.

The MVC design pattern partitions an application in

the following way. The model represents the

application data, the state of that data, and the

operations that permit this application information

to be accessed and changed. The view renders the

contents of the model. Traditionally, the view is the

GUI representation of the application. The controller

handles events generated when the model changes,

such as when user input from the mouse or

keyboard modifies the data (i.e., by entering new

data) or changes state (i.e., by changing focus from

one control to another). Figure 3 depicts the three

parts of the MVC design pattern and the interactions

among them.

As seen in Figure 3, the model encapsulates the

application state, responds to state queries, exposes

application functionality through programming in-

terfaces, and notifies the appropriate views when

changes occur. The view component renders a

presentation for the model, requests updates from

the model, sends user input events to the controller,

and allows the controller to select views. The

controller component defines the application be-

havior, maps user actions to model updates, and

selects views.

The view accesses the model to obtain the infor-

mation needed to render the model’s contents. For

example, for a word-processing application, the

view obtains text strings and style information from

the model; when the model changes, the view

renders the appropriate visual text. This design

pattern maintains a careful separation of content

from presentation.

The controller must update the model when user

input events result in some state change in the

model. Following the word-processing example,

when the controller captures keystroke events, it

might insert new text characters into the model of

the document being edited, triggering the view to

visually render the change in content.

MVC in the context of assistive technology

The applicability of the MVC design pattern to the

assistive technology interoperability problem is

straightforward: an AT must create alternative views

for the application’s model. Reference 12 describes

the construction of ‘‘dual user interface’’ applica-

tions, in which a single authoring tool is used to

capture the semantics of the interface and then

generates multiple user interfaces. Each generated

UI is optimized for the abilities of the target user

community. The dual user interface is an excellent

illustration of the utility of the MVC-based approach.

More generally, Reference 17 describes the desir-

ability of ‘‘multilayer’’ UI design, in which a

collection of view-controllers of varying complexity

and functionality levels is built for a single

application.

Sometimes these new views are very tightly bound

to the original visual rendering of the application on

the computer display. For example, a screen

magnifier such as ZoomText**
18

builds its unique

view by enlarging the contents of a subsection of the

display. In other cases, however, there may be a

looser binding between the view created by the AT

and the original visual rendering of an application’s

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005 BRUNET ET AL. 449

model. IBM Home Page Reader
19

(HPR), a talking

Web browser, illustrates the latter approach.

HPR provides the traditional graphical rendering of

the Web page for sighted users by embedding the

Microsoft Internet Explorer** (IE) Web browser

control.
20

HPR supplements the graphical view of

the Web page with synthesized speech to deliver

aural renderings of the page, which include in-

formation not explicitly rendered in IE’s graphical

view. Such extra information includes row and

column numbers within a table and announcements

of the top and bottom of a form.

The AT, in addition to generating new views

appropriate for people with disabilities, must in

many cases deliver a new controller for the

application. The controller component of HPR, for

example, captures all keystroke and mouse user-

input events and redefines the handling of many of

these events. For example, a mouse click on a

paragraph of text causes HPR to speak that text and

reposition the speech cursor to that location.

REQUIREMENTS FOR A PLATFORM

ACCESSIBILITY ARCHITECTURE

We have argued that an application’s semantic

information must be maintained separately from the

presentation of that data. An AT can then create

alternative views for the application’s model. The

need for new views and controllers aligns nicely

with the widely accepted MVC design pattern, and

may present opportunities to exploit earlier invest-

ments in MVC architectures. These new views and

controllers are uniquely designed to meet the needs

of people with disabilities. With this in mind, we

present the first requirement for a platform accessi-

bility architecture; that is, that an IT application

must be structured in such a way that the

application model, views of that model, and control

functions which modify the state of the model, are

well isolated from one another.

The platform accessibility architecture defines a

standardized API, or ‘‘contract,’’ between the

application (which maintains the model) and the

assistive technology (which provides new views and

controllers). The architecture defines the scope and

the semantics of the information exchange. Con-

sequently, the architecture ultimately limits the

expressiveness, or the ‘‘richness,’’ of the user

interfaces that can be built for end users with

disabilities. This section presents our view of the

architectural semantics that must be supported by

any platform accessibility architecture. Later, in the

section ‘‘Assistive technology requirements,’’ we

present the features required in the AT and focus on

the needs of alternate view-controllers. See ‘‘Sum-

mary of accessibility requirements for applications

and tools’’ in the Appendix for a discussion of the

issues concerning an application’s interaction with

the platform accessibility architecture.

The platform requirements mostly concern isolating

and communicating information about the applica-

tion model. A robust object model containing the

necessary semantics must be maintained by the

application and communicated through the platform

accessibility API. We present some representative

object model semantics which are common to many

Figure 3
The MVC design pattern

Change State

Query State

State Change Event

Select View User Action Event

View
• Accesses model state
• Renders the model
• Sends user actions to controller

Controller
• Defines application behavior
• Maps user action to new view
• Maps action to new model state

Model
• Represents application data
• Maintains application state
• Exposes application state
• Notifies view of state changes

BRUNET ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005450

applications. We discuss the requirements that the

platform architecture must provide for describing

the relationships among the objects in the model

and explain the need for an event system to

communicate user input and changes in the model.

A challenging trade-off exists in making object-

model semantics both generic and expressive, as

each of these objectives works against the other. In

the following subsection, we explore some ap-

proaches toward resolving this conflict.

Object model
The platform accessibility architecture must enable

programmatic access to an object model for an

application through a well-understood contract.

Assistive technologies use this feature to access the

semantic information in an application.

There is often more than one object model that

might be useful to an assistive technology. Screen

readers typically build richer functionality by

integrating the information obtained from several

models. The application model, from a pure MVC

perspective, consists of the data which makes up the

application and the operations that modify it. Before

standardized contracts, or accessibility APIs, were

created, a model needed to be reproduced by

capturing the necessary data before it was rendered

on the screen.

Off-screen model

Before the advent of GUIs, visual user interfaces

were based on character I/O. Typically, the

currently running program—a single application—

controlled the entire display device. A screen reader

for the MS-DOS
21

platform had two designs avail-

able for reading the displayed text for alternate

presentation to the user. The first design intercepted

the DOS interrupts that drew text on the screen. The

second design polled the text buffer for changes.

The first design is closer to the modern approach,

but was invalidated when character I/O applications

circumvented the DOS API by writing directly to the

text screen buffer. By polling the screen buffer, the

second design indirectly introduced the concept of a

‘‘model’’ of the application contents. Within the

MVC framework just described, the text screen

buffer provided the point of interface between the

application model and its view (the text and its

attributes). IBM Screen Reader* for DOS,
22

an

example of the second design, used the screen buffer

as a model of the application’s content.

The modern GUI renders text and attributes in bit

patterns that do not contain the actual characters. As

a result, an AT for a GUI must rely on an alternate

model of the displayed content. Because the first

GUIs provided no standard model of the content,

ATs created their own model by intercepting text-

drawing calls and then caching the merged text in an

off-screen model (OSM).
15

IBM Screen Reader/2 for

OS/2 was one of the first ATs to create and use an

OSM.

The OSM technique continues to be widely used by

assistive technology vendors in the current Micro-

soft Windows environment. Among other advan-

tages, the OSM enables the AT to present and

interpret spatial relationships among most visual

user interface objects, allowing the AT to present a

richer view to the non-visual end user.

However, the OSM is also problematic. The AT must

infer application semantics from information that is

intended for visual display. This is error-prone: for

example, the juxtaposition of two objects on the

visual display does not ensure that the two objects

are related. Furthermore, AT vendors will not be

able to create OSMs in newer operating systems with

more robust security features and sophisticated

vector graphics technology. In the absence of an

OSM, systems architectures must still provide the

equivalent spatial information and other visual

attribute information to an AT.

Generic model or accessibility API

Rather than infer the semantics of an application

from its OSM, it would be better to build new views

directly from the application’s internal model. An

assistive technology benefits when a single,

standard object model can be used to access all

applications and all user interface objects that might

appear on the visual display. Platform architects

have defined a number of important architectures to

address this need: Microsoft Active Accessibility**
23

(MSAA), which is available on Microsoft Windows

desktop environments ranging from Windows 98

through Windows XP, the Java Accessibility API
24

(JAAPI), available in the Java SDK (see Figure 4 for

a graphic depiction of this API); and the Accessi-

bility Toolkit API
25

(ATK), a component of the

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005 BRUNET ET AL. 451

Gnome Accessibility Project
26

(GAP), available in

Gnome Version 2.4 and later.

Each of these architectures represents user interface

objects as nodes in a tree structure, in the same way

as an XML (Extensible Markup Language) document

represents the information in the document as a tree

of nodes. The customary set of navigation methods

are provided so that assistive technologies can

traverse (or ‘‘walk’’) the tree to the top object and

recursively enumerate the children. Without meth-

ods to access parent and child objects, it is

impossible for an AT to access all the objects and

their accessibility information in an application, and

it is difficult for an AT to provide logical navigation

of the document structure.

The semantics in each of these architectures defines

a discrete number of UI types, attributes, and states

for each node, which usually corresponds to UI

objects in the application. For example, each

framework defines object types, called roles, such as

‘‘button,’’ ‘‘list box,’’ and ‘‘text,’’ and attributes such

as ‘‘name,’’ ‘‘value,’’ ‘‘parent,’’ ‘‘child,’’ and ‘‘screen

location.’’

The ability to access any application through a

small, predefined set of object definitions simplifies

the AT’s work. However, this standardization comes

at a cost. The industry continually creates new,

custom types of GUI objects. Whereas the simple,

standardized accessibility API promotes interoper-

ability with well-known UI objects, it is frequently

difficult to build an adequate non-visual view of a

custom GUI object. The standard semantics pro-

vided by an accessibility architecture frequently lack

the expressiveness needed to describe new, inno-

vative UI objects or document structure. In such

cases, the richness of the user experience is lost in

exchange for the simplicity of a standard interface.

For example, to obtain a rich interface for an

ActiveX** GUI control in the current Microsoft

Windows environment, AT developers usually

circumvent the accessibility architecture and di-

rectly access the ActiveX control’s methods. Access

to the particular methods of a specific UI object may

allow the AT to provide greater functionality, but

using many different API sets to access a wide range

of application components is a development burden.

Doing so requires a specific development effort on

the part of each AT vendor. If this specific invest-

ment is not made by an AT vendor, an interoper-

ability issue results, and the new GUI object is

inaccessible. In high security environments, it may

not be possible to access the object’s methods.

We explore one strategy toward enabling the

extension of the generic model in the section

‘‘Generic model extensibility.’’

Application-specific Document Object Model

There is a significant industry trend toward repre-

senting application data in XML accessed through a

parsed Document Object Model (DOM). The DOM

API provides the contract to access the information.

The ‘‘schema’’ for the object model is tailored for

each specific application. For example, Microsoft

Word has a different object model from a Web

service or Web page.

Figure 4
Java Accessibility API

Assistive
Technology

Role
States
Actions
Text cursor
Selection
Text
Hypertext
Value
Name
Description
Children
Events
Relations

Accessible Java
Foundation
Classes
Component

Data

UI

BRUNET ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005452

Because the object model is designed for a specific

application, an AT with access to this model may

often build a richer view than those which are

available only through the platform architecture’s

generic model. Unfortunately, requiring the AT to

develop application- and DOM-specific algorithms

for a given class of applications is costly. For

example, to present a usable Microsoft Word inter-

face for blind users, the AT must develop specific

algorithms that understand the semantics and

schema of the Word DOM.

Support for device-independent actions

An application object model must provide an

accessibility API through which an AT can obtain

the set of actions and descriptions for each object in

the application and make all actions available

through programmatic access. The AT can convey

this information to the user so the full range of

features in an application can be used. By providing

this programmatically through a predefined acces-

sibility API, an assistive technology could also

invoke any function by using alternative input

mechanisms rather than having to simulate a set of

key strokes or mouse clicks to perform the same

task. The Java and Gnome accessibility APIs provide

this capability through their AccessibleActions

interface.

For example, a Web-based application might attach

several JavaScript handlers to a single UI object,

associating each handler with a unique mouse event

(such as ‘‘mouseOver’’ and ‘‘mouseClick’’). In order

to make these features accessible, the AT must be

able to interrogate the application as to what each

handler does and be able to programmatically

invoke each handler.

Relationships among user interface objects

An object model of an application’s user interface by

itself does not provide enough information for an AT

to build an adequate view of an application. The AT

also must be able to determine the relationships

among the user interface objects.

As a simple illustration of this requirement, consider

the association of an input object, such as a

checkbox, with its text label, as shown in Figure 5.

The purpose of the checkbox is obvious in the visual

presentation because the text and checkbox are

displayed next to each other. In the case of more

complex collections of elements, where an object

controls one or more other objects, such as the

formula field of a spreadsheet that controls multiple

cells, the associations may not be readily seen. This

potential source of end-user confusion is resolved

when the application specifies the explicit associa-

tions using facilities in the platform accessibility

architecture.

The ability to describe spatial relationships among

objects is important for similar reasons. Any

experienced software developer appreciates the

value of correct indentation for a block of computer

code. When a user of a visual interface wishes to

collaborate with a user of a non-visual interface, it is

helpful if the two users can refer to the location of

one object with respect to another object, for

example, ‘‘I’m interested in object B, in the upper-

right corner of the display.’’ Finally, assistive

technologies may also interpret implied associations

among objects, such as labels for user inputs, based

on relative spatial positioning.

The ability to specify sophisticated relationships

among objects is a key challenge in building

accessible IT solutions. The industry has made

significant progress in IT accessibility for applica-

tions such as online forms, in which simple text and

user inputs are the only UI elements. However,

many of the more knowledge-intensive applications

use maps, graphs, and drawings as the user interface

paradigm.

In light of these challenges, it is clear that a robust

facility for specifying the relationships among

objects is a core requirement for any platform

accessibility architecture.

Figure 5
A simple label/object relationship

Check this box to donate $3 to the Presidential Election Campaign:

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005 BRUNET ET AL. 453

Events

We have considered the requirements for an object

model of the user interface elements and for the

relationships among those elements. The final

requirement for any platform accessibility architec-

ture is the specification of an event protocol and

event semantics, through which the AT is informed

of state changes in the current application model,

and of user inputs.

For example, in an online form on a Web page, if a

user makes an error, the form validation algorithm

typically presents an error message and then sets the

keyboard focus to the form field containing the

incorrectly entered data. Ideally, the platform

accessibility architecture should broadcast events to

provide notifications of error messages in addition

to the new location of the application’s keyboard

focus.

In addition to events triggered by state changes in

the UI model, the platform accessibility architecture

must supply the AT with one or more features which

permit it to monitor and modify user input events.

The keyboard is a particularly critical input device; it

is thus essential that the platform accessibility

architecture allow the AT to intercept and modify

the stream of events generated by the keyboard.

An AT usually defines many unique key sequences

that can be entered by the user and intercepted and

interpreted by the AT without being delivered to the

application. For example, these key sequences may

provide access to application features that are

usually available only by use of the mouse. AT key

sequences also provide the user with the ability to

invoke AT-specific features, such as reviewing

information displayed on the screen, obtaining

additional information about the current object with

focus, and accessing and changing the AT’s own

features, help, and settings.

The Windows operating system (up to and including

Windows XP) satisfies this requirement by provid-

ing a system-level API that allows an application to

intercept all keystroke events.

Generic model extensibility
The section ‘‘Generic model or accessibility API’’

introduced the problem of the limited expressive-

ness available in a generic object model. In this

section, we explore approaches to extending a

generic model. We first consider only the ‘‘role’’

attribute, which is one of the key standard attributes

found in all current accessibility architectures.

Roles, which are associated with visual UI compo-

nents, allow an AT to determine the function,

behavior, and alternate presentation for the UI

component. Today’s operating-system accessibility

infrastructures assign roles statically and do not

address ‘‘role extension’’ very well. Adding new

roles requires updating and redistributing the infra-

structure, making it very difficult for groups other

than the operating-system development team to

create new UI components with accessible infor-

mation.

Microsoft, in its upcoming Longhorn operating

system,
27

has taken steps to improve this situation

by providing a set of behaviors called UI Automa-

tion
28

Control Patterns, which any UI object can

support. Although this model is more flexible than

those using predetermined roles, it still uses a static

set of known behaviors.

A more complete approach to creating an extensible

model is under development, as part of the work on

the semantic Web. The semantic Web (an extension

of the current Web in which information is given

well-defined meaning) provides a common frame-

work that allows data to be shared and reused

across application, enterprise, and community

boundaries. It is a collaborative effort led by the

W3C with participation from a large number of

researchers and industrial partners. It is based on

the Resource Description Framework (RDF), which

integrates a variety of applications using XML for

syntax and URIs (uniform resource identifiers) for

naming.
29

RDF provides a rich semantic language to describe

the function of a UI component. The AT can

interpret this language and provide an alternate UI

for the component if the language defined is rich and

pervasive enough. The industry has started to

provide this definition through the semantic Web—

the first real opportunity to provide semantics

through a semantic-extensible framework.

RDF can be used to create a schema (describing the

properties, semantics, and types of resources) for

taxonomies that specifies how to represent objects

and their relationships. These taxonomies can

describe a previously unknown object, identify

BRUNET ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005454

ancestor objects from which the new object inherits

its behaviors, how it interacts, what states it can

achieve, and the events that it generates.

All of these semantics allow an AT to discover a

semantic interaction model and create a knowledge

base for a previously unknown object. The AT can

use this knowledge base to determine how to

interact with the new object (or ‘‘widget’’). More

important, middleware can use this information to

better adapt Web content to different devices, users,

and environments. Reference 14 describes one

application that uses RDF-encoded semantics to

construct multiple views of Web pages for a diverse

user community.

Today, developers provide speech interfaces (e.g.,

voice recognition commands) for commercial ap-

plications that are not specifically created for people

with disabilities. If knowledge of how the objects

were used to create a user interface were available,

it would be possible to create speech interfaces

directly for users who are blind or who have

mobility impairments.

An upcoming XHTML 2 (Extensible Hypertext

Markup Language Version 2) meta-specification

module
30

will include a new attribute called role,

which will define the content type of the object,

regardless of the element with which it is associated.

In essence, it allows the creation of an extensible

object model that can be queried to determine how

to interact with the targeted element.

REQUIREMENTS FOR AN ASSISTIVE
TECHNOLOGY

Developing an assistive technology, such as a screen

reader or magnifier for users with visual impair-

ments, requires creating one or more new view-

controllers for applications and perhaps for the

platform itself. The views must provide alternatives

that allow a person with a disability to interact with

all the features and functions of the platform and

applications, allowing him or her to be as productive

and efficient as a nondisabled peer.

To meet this objective, an assistive technology

developer must consider and accommodate alter-

native-input navigation to all features and content,

rendering of all information with alternative output,

customization through settings and scripting, per-

formance, and compatibility and interoperability.

Navigation to all features and content

The platform must make all content accessible

through an object model or a programming inter-

face. The AT must provide navigation to all features

and content using at least one alternative mode of

input other than a pointing device. The alternative

input method depends on the type of disability for

which the AT is being created and the type of device.

The primary alternative input for navigation for

most users with a disability, especially for users

with visual impairments, is the keyboard, but voice

recognition or single switch input with an on-screen

keyboard is sometimes a better choice for users with

mobility impairments.

It is surprisingly challenging to design a user

interface which is purely keyboard-driven that

enables a screen reader to access all features and

content. An initial, overly simple strategy might rely

on following the system focus for keyboard input.

Usually, this approach provides navigation only to

elements that can be activated or edited, such as

links, controls, and documents. This navigation

strategy skips the content, called static text, which

does not normally receive keyboard input focus.

The navigation strategy delivered by the AT must

provide access to static text. Doing so usually

requires the AT to define and maintain at least one

additional ‘‘virtual’’ cursor to track current position

within static text. This feature is often referred to as

a ‘‘content focus’’ or ‘‘point of regard.’’ In addition,

the AT must define additional keystroke entry

commands to control the point of regard. Because

most simple keystroke sequences are used by some

application, it can be difficult to identify keystroke

combinations that do not conflict with other features

in the platform or application. An example of such

an AT is the JAWS** for Windows
31

product. JAWS

(Job Access with Speech) is a general-purpose

screen reader that reads most Windows applica-

tions. It defines several cursor modes. One of these

modes, called the ‘‘virtual PC cursor,’’ lets the user

access and review any of the static text currently

displayed within the application’s graphical win-

dow, regardless of any input fields that might

currently have keyboard input focus. JAWS uses

unique key combinations—some quite complex—to

avoid key conflicts with the system and application

keys. Instead of following keyboard focus, HPR,

which is a foreground Web browser application,

provides its own reading-mode key sequences.

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005 BRUNET ET AL. 455

In contrast to general-purpose screen readers, HPR

is a single application that delivers a multimodal

user interface for Web browsing. HPR maintains just

one cursor mode for this limited application domain,

simply ignoring the system keyboard input focus

and maintaining its own point of regard for the user.

HPR also defines its own navigation and command

key sequences, as follows:

Basic sequences

Stop (Ctrl or Esc)

Read page (Spacebar)

Next/previous link (Tab/Shift þ Tab)

Activate link/control (Enter)

Next word (Ctrl þ Right Arrow)

Previous word (Ctrl þLeft Arrow)

First/Last item (Ctrl þ Home/End)

Up/down 10 items (Page Up/Page Down)

Begin/end of entity (Home/End)

Sequence for items and most reading modes

Read previous, current, next entity (Left Arrow,

Down Arrow, Right Arrow)

Sequence for the Windows Cursors reading mode

Previous character (Left Arrow)

Next character (Right Arrow)

One line up/down (Up/Down arrows)

The keystroke sequences are simpler than those

required for a general-purpose screen reader; this is

possible because the problem domain is much

smaller. Figure 6 shows some of the items that the

user can direct HPR to read.

Rendering of all information

When meaningful information is not available

through the platform architecture or when devel-

opers create custom controls, AT developers must

develop creative, but non-error-prone heuristics for

finding and producing the object information they

need to present to the user. Assistive technologies

today use an ‘‘object model plus’’ system and APIs

to ask for both visual and structural information

about the content being displayed. Once the AT has

the information for which it is looking, it builds text

strings to deliver to alternative output devices.

These devices, which are now more sophisticated,

include text views with highlighting, color contrast,

and magnification; software TTS engines; and

Braille displays with a range of Braille character

output and navigational input features. Figure 7

shows the text view of HPR.

As an example of both standard API usage and

heuristics, Home Page Reader takes advantage of the

many HTML 4.01 accessibility features and implied

HTML tag semantics that are available through the

Microsoft Internet Explorer DOM interfaces, such as

the LABEL element with the for attribute to

explicitly label form controls, the headers attribute

to provide headers for table cells, and the alt

attribute to describe images and map areas. In cases

Figure 6
IBM Home Page Reader reading modes

Figure 7
Text view of Home Page Reader

BRUNET ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005456

where the Web author provides no accessible

information, or where the HTML standards provide

insufficient ways for developers to supply accessible

information, HPR and other assistive technologies

resort to heuristics, such as looking for text that is

nearby but not explicitly associated with a control as

a label for that control.
32

Customization through settings and scripting

ATs present application content that is normally

displayed to the end user in an alternate form to

make the application accessible. Because no two

users have exactly the same abilities, experience, or

style of working, the AT must offer mechanisms

such as settings and scripting to customize the

presented content, as described next.

Settings

As a prime example of customization through

settings, AT products that use TTS engines to

announce visual content take advantage of TTS

engine features, such as different speech rates,

voices, multiple languages, and dictionaries, to

distinguish different types of information and

increase understanding and productivity. Custom-

ization through settings can be helpful but also more

complex for the end user, as illustrated in the Speech

Settings dialog for Home Page Reader (see Figure 8),

which uses the IBM TTS engine.
33

Scripting

When an AT works with more than a single type of

application, it needs to provide a more powerful

mechanism than settings to customize the output.

General purpose ATs, like JAWS for Windows and

the Java Self-Voicing Development Kit
34

(SVDK),

must provide both a settings interface and a

scripting language.

Scripting languages can be unique to the AT, like

that used in JAWS for Windows, or they can be in

the form of a library of specialized functions in a

standard language, as in the Java SVDK. Ideally, as

in both of these ATs, the custom script can apply to

all applications; alternatively, they can apply to a

single application. The scripting language should

provide a means to define new key sequences and to

respond to application events like focus changes and

text cursor movement. Furthermore, it should

provide a way to query information about the

application like the contents of selected text or the

state of a control.

Performance

A major concern for users of an assistive technology

is system responsiveness to end-user requests.

Because an AT user must navigate and process

much more textual information and use slower

alternative input and output mechanisms, system

responsiveness and quick rendering of output, such

as text spoken by TTS engines, is essential for end-

user productivity. When a screen reader encounters

a complex UI, the responsiveness of the speech

output can dramatically degrade due to the com-

puting resources used by the AT to process a large

volume of information.

To improve performance, ATs may buffer large

amounts of content. For example, if a user requests

to read an entire Web page, Home Page Reader

collects and sends just a small unit (or ‘‘chunk’’) of

information to the speech engine to initiate speech

instead of making the speech engine wait for HPR to

gather all Web page information. While the engine is

speaking the first chunk of information, HPR repeats

this process until all information has been collected

and sent.

Still another performance trade-off consideration is

the quality of the TTS engine. Most English and

European assistive technologies use a formant TTS

engine for speech output, that is, one which uses

resonances of the human vocal track. The engine

uses a rules-based synthesis process that produces a

Figure 8
Speech Settings dialog for Home Page Reader

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005 BRUNET ET AL. 457

voice that sounds mechanical. This speech engine

has minimal system requirements for memory and

disk space and offers a broad range of voices,

languages, speech rates, and other speech charac-

teristics. Specifically, it is very quick to start and

stop speaking, and due to its strict rules-based

output, it is consistently intelligible to experienced

listeners, even at high speech rates.

Used mostly for telephony applications that run on a

server, a ‘‘concatenative’’ TTS engine provides

natural-sounding synthesized speech that is pro-

duced by putting together sound bits from a library

created from professionally recorded sentences and

phrases. This type of speech engine requires

significantly larger amounts of memory and disk

space than does formant speech and offers a smaller

range of speech characteristics than a formant

speech engine. In addition, its limitations include a

slower maximum speech rate, using only one

language engine at a time and only one or two

voices. It also has greater system requirements to

achieve start and stop responsiveness comparable to

formant TTS engines.

Event handling can be handled in an in-process or

out-of-process manner, and this design choice can

affect AT performance. In-process assistive tech-

nologies, such as Home Page Reader, operate in the

same operating-system process as the GUI that they

are servicing. Out-of-process assistive technologies,

such as any MSAA client like the JAWS screen

reader, operate in a different operating-system

process than the application they are serving.

Although Windows ATs have improved perfor-

mance by finding mechanisms to access MSAA in an

in-process manner, this is not the case on other

systems. The overhead incurred in crossing process

boundaries has a significant impact on the design

and performance of the accessibility APIs.

Compatibility and interoperability

Compatibility and interoperability between assistive

technologies and the applications they support

present significant problems. Many assistive tech-

nologies are competing for the same system

resources, accessing the same APIs and events, and

often trying to speak the same information using

different TTS engines. In addition, the AT may only

work well with a selected number of applications

with which it may nevertheless have keyboard and

feature conflicts.

To handle compatibility problems, ATs must offer

settings and key sequences to silence, modify, or

turn off their speech, keys, or other features on

demand or when a specified application has focus.

An AT should conform to standards to minimize

interoperability problems. Due to problems with

keyboard conflicts, ATs often do not follow platform

user-interface design standards or comply with

software accessibility guidelines like Section 508
35

and the W3C User Agent Accessibility Guidelines
36

(UAAG).

ACCESSIBILITY REQUIREMENTS FOR
APPLICATIONS AND TOOLS

The accessible object model, which is made

available through the platform accessibility archi-

tecture, is useless without the active participation of

the application. An application must make its

information available through the model so that an

AT can present it. Enabling applications for acces-

sibility and verifying that enablement is a significant

task. Enablement challenges include the lack of

knowledge about how to develop accessible user

interfaces, the cost of developing the user interface,

and the costs to repair an incorrectly constructed

user interface.

Developing an accessible user interface without

accessibility enablement tools is difficult and error-

prone. Tools help to encapsulate knowledge of good

accessibility design and implementation. Their use

reduces errors and can automate accessibility

enablement, thus reducing application cost and time

to market. Based on our experience, we believe that

the single most important factor in a large orga-

nization’s ability to consistently deliver accessible

solutions is the availability of robust accessibility

enablement tools.

Often, the technical difficulties of developing an

accessible user interface depend on the underlying

accessibility architecture of the platform. IBM

primarily focuses on these platforms: Microsoft

Windows,
23

UNIX**, Linux using the Gnome GUI

toolkit and desktop,
26

the Web,
37

Java Swing,
24

and

Eclipse and Eclipse-based environments.
38

Within IBM, Eclipse is now supplanting Windows

and Swing as the primary rich-client development

environment. Eclipse offers a level of host platform

independence that reduces development costs and

BRUNET ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005458

improves time to market. All enablement in Eclipse

is currently done at the source level through APIs in

the org.eclipse.swt.accessibility package. Although

Eclipse has no standard accessibility enablement

tools, the IBM Accessibility Center has published a

validation tool, the IBM Reflexive User Interface

Builder from IBM alphaWorks* (http://

www.alphaworks.ibm.com/tech/rib).

Accessibility enablement occurs on at least three

levels: platform, infrastructure, and application.

Accessibility tools are important at the platform

level and critical to achieve success at the

application level. All tools must assist the devel-

oper in providing accessibility-enabled code and

content. Because accessibility enablement is pri-

marily related to user interface development, and

in particular, GUI development, most accessibility

tools should be integrated into GUI development

tools.

As an analogy, accessibility enablement resembles

the localization of products. Developers should

design enablement into their products from the

beginning, when the cost to do so is lower. They

need a complete accessibility development infra-

structure to support their efforts, including tools and

practices. A development organization must define

processes that ensure that accessibility is addressed

in all phases of the development process. To

develop accessible products, developers need ac-

cessibility development guidelines and checklists,

appropriate schedule time and resources, and

management ‘‘buy-in.’’

Accessibility enablement tools are needed to support

both the creation of accessible code and content and

the repair of existing but inaccessible code and

content. Tools to create accessible, rich GUIs and

Web content should provide for a palette of

accessible controls, prompts that appear when

application content is being created, verification of

content, and repair of inaccessible content.

Palette of accessible controls

The tool should provide a set of known reusable and

accessible user interface controls (also known as

‘‘widgets’’) for the user to select. If the standard

controls provided by the host platform are not

accessible, the tool should offer some custom

controls that have been enabled. The tool should

also prompt the developer to specify any accessible

properties for these controls when they are selected.

Prompts while creating the content
The tool should guide the developer to make the

best possible enablement decisions. It should

automate or eliminate many low-level coding tasks.

An example of these prompts is a dialog box for

inserting an image into a GUI. The dialog box needs

to provide a way to add alternative text for that

image. For example, the Microsoft PowerPoint**

tool provides the dialog box shown in Figure 9 for

all images.

Verification of the content

The tool should detect and present to the user any

accessibility enablement problems. All accessible

tools, which should run during both authoring and

build times, must ensure that the generated GUI

meets the defined minimum levels of enablement.

Some critical requirements for enablement include:

GUIs must be fully keyboard accessible; any non-

text object must have alternative text; fonts, colors,

and timing of events in GUIs should be configurable;

and GUIs should respect the system accessibility

settings. For example, a Web content creation tool

should check each ,img src¼ ‘‘...’’. tag in the

document for an alt attribute and report any

missing alt attributes.

Repair of inaccessible content

The tool should present options for correcting

accessibility defects. Automatic repair should only

be attempted when it is certain that the repair action

is appropriate. When possible, accessibility tools

should prevent the creation of inaccessible GUIs and

at least warn the developer if one is being created.

Prompts should be provided to help the developer

create the most accessible GUI possible.

As an example, the Web content creation tool can

display a prompt for each IMG tag that does not have

an alt attribute. For greater ease of use, the tool can

remember each image source it has seen and

automatically provide the alt text for repeated use

of the same image.

Higher-function tools should go beyond the code-

level tasks described previously in supporting acces-

sible design. They should ensure that the GUI is well

organized and that the design is properly reviewed for

both usability and accessibility enablement.

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005 BRUNET ET AL. 459

Numerous commercial vendors provide Web con-

tent (HTML) accessibility verification tools, such as

the ParaSoft tool, WebKing.
39

Commercial tools to

validate rich-client GUIs are less prevalent.

LESSONS LEARNED—MICROSOFT WINDOWS

TODAY

We will complete our survey of systems design

requirements by providing a perspective on the

development of the Windows accessibility architec-

ture. This architecture has evolved over the past

decade. It is an example of addressing accessibility

after initial release that has resulted in interoper-

ability problems between assistive technologies

(ATs) and Windows applications
40

and higher

support and enablement costs for both.

Figure 10 is a comprehensive view of the Windows

accessibility framework. Applications map to an

assistive technology platform layer, which is ac-

cessed by assistive technologies. Primarily, we focus

on screen reader access because most of the

accessibility information used by screen readers is

used by other assistive technology solutions. Note

that it is not important to understand all the

technologies depicted in Figure 10, only that the

accessibility environment in Windows is a complex

one.

The first accessibility framework for Windows,

Microsoft Active Accessibility**
41

(MSAA), was

introduced in May 1997. Prior to this date, no

accessibility framework existed for Windows, re-

sulting in the loss of access by blind users who

instead used the pervasive Disk Operating System
42

(DOS) systems for access. To address this problem,

screen reader developers used low-level graphical

interfaces, such as the Graphics Device Interface

(GDI) in Windows, to read the display
15

in a method

called ‘‘GDI hooking.’’ This process was slow and

resulted in interoperability problems in early GUI AT

solutions, such as Screen Reader/2 from IBM and

SlimWare Windows Bridge
43

for Windows 3.1 from

Synthavoice Computers, Inc. Additionally, mobility

access features found in the Apple Computer

MacIntosh**
44

were not integrated into Windows

3.1. The Massachusetts commissioner for the blind,

Charles Crawford, threatened to boycott Microsoft

products
45

as a result. Subsequently, in 1995,

Microsoft formed an Accessibility and Disabilities

group,
46

which resulted in the inclusion of mobility

and low-vision features in Windows 95.

A first initiative of the Microsoft Accessibility and

Disabilities group was to create a new accessibility

API called Microsoft Active Accessibility (MSAA),

which is a Windows architecture that creates

Common Object Model (COM) servers for each GUI

control. These servers provide functions (through

the IAccessible and IDispatch interfaces) that ATs

can use to get information about a control. The

values returned are inferred by the MSAA runtime

Figure 9
Microsoft PowerPoint dialog for entering alternative text for images

Assistive
Technology

Accessible
Solution

Platform Application

BRUNET ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005460

but, with significant effort, can be augmented by

developer-written code.

During MSAA’s creation, Microsoft held meetings to

discuss the requirements and specification of the

API
43

with AT vendors, but the meetings did not

include external application developers. Unfortu-

nately, the APIs were inadequate for developing

assistive technologies and accessible solutions.

Because Microsoft did not build assistive technolo-

gies such as screen readers, it was difficult to test the

MSAA designs and implementation. Also, MSAA

was not implemented to its full capabilities in many

of Microsoft’s own applications, such as Word.
47

Few developer guidelines existed, causing a lack of

support and implementation of the architecture by

AT vendors. Additionally, the MSAA architecture
48

lacked support for rich text, documents, complex

tables, and languages other than English.
49

As a

consequence, AT vendors relied on alternate APIs,

Windows 98,
XP, 2000

Figure 10
A comprehensive view of the Windows accessibility framework

Tools
Layer

Application Layer

Accessibility Events
Watcher

Accessibility Objects
Watcher

Inspect

MSAPI Display Drivers Parallel/Serial Drivers Serial Keys

TTS Special Keyboards Braille Devices Switch DevicesAT Building
Blocks

Onscreen
keyboard

JAWS
Window Eyes SR

ZoomText
Win2K Magnifier

Keyboard Filters
Mouse Keys

Sound Sentry
Show Sounds

AT Layer

AT Platform
Layer

MSAA
(COM)

Mozilla
DOM

COM Access
Bridge

API
Calls

System
Message Hooks

GDI
Hooks

• MSAA
• IE Document Object Model (DOM)
• Proprietary DOMs

Component Object Model (COM)-based API

EclipseMS Office Windows Applications Windows Desktop

Office
DOMs
(COM)

MSAA
server
(COM)

Customer
Controls
(COM) MSAA

(COM)
COM

Customer
Controls

ActiveX

MSAA
server

nsl Accessible

Gecko Engine,
XUL

Mozilla

IE DOM
(COM)

MSAA Servers
(COM)

Web Browser Standard Controls
JRE

JA-API

Java
Applications

SVDK

DOM

Java Access
Bridge

Windows

Applications

Standard Windows Controls

Note: An inconsistent AT platform layer results in lack of interoperability among AT vendors and applications.

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005 BRUNET ET AL. 461

such as the Microsoft Word Object Model,
50

to

access documents and text.

When Pure Java applications were introduced in

1998 in the Java Foundation Classes, also known as

Swing 1.0, they incorporated the Java Accessibility

API
51

(JAAPI) as a result of collaboration between

IBM and Sun.
52

Because JAAPI, like the JVM**

(Java Virtual Machine), needed to run on multiple

operating systems, it could not rely on OSM

technology. This required the JAAPI to incorporate

APIs for rich text and tables and for more

comprehensive relationships among GUI objects.
53

IBM developed the Self-Voicing Kit for Java, a pure,

cross-platform Java-accessible application reader, to

test JAAPI, but it could not read Windows applica-

tions. Because MSAA 1.3 had no API for these

constructs, Sun created the Java Access Bridge
54

in

August, 1999, so that native Windows ATs could

access Java applications from a Windows shared

library, resulting in yet another accessibility API for

Windows.

MSAA’s lack of support for these complex controls

and constructs extended beyond Java—requiring

ATs to continue to use OSM technology to reverse-

engineer the information not provided in MSAA.

OSM technology is presentation-dependent, and

each new application revision would cause screen

readers to malfunction. Also, OSM technology is not

adequate to handle rich documents, as it does not

convey document structure.

The effort to compensate for the missing MSAA

function began a general trend by application

developers, including developers of Internet Ex-

plorer, Mozilla, and other applications, to export

their proprietary COM interfaces or shared libraries.

Although no platform accessibility API may be all-

encompassing, the multiple API sets used by

application and AT developers for sharing accessi-

bility information on Windows created an enormous

interoperability problem (see Figure 10).

AT vendors began looking at applications that

bundled different technologies using different ac-

cessibility APIs and object models. Often, the AT

vendor did not know which one to use. Even though

Microsoft directed developers to use MSAA to make

their applications accessible, little information was

available on how to implement it properly.
40

As a

result, Windows developers expended considerable

expense enabling their applications, but they still

did not work well with assistive technologies, in part

because AT vendors often reverted to their ‘‘GDI

hooking’’ reverse-engineered approach.
15

Microsoft later addressed some deficiencies by

introducing MSAA 2.0 extensions for text services,

including rich text, and documentation on how to

implement MSAA.
55

The updated documentation

has helped application developers, but many AT

vendors have not adopted the new APIs. In fact,

MSAA 2.0 is not even offered by all versions of

Microsoft Windows. Consequently applications like

Eclipse limit their support to MSAA 1.3. Many AT

vendors continue to use the alternative solutions

they developed and have not yet adopted the new

APIs because they have found, for example, the

Microsoft Word DOM to provide more information

than MSAA 2.0.

SUMMARY AND CONCLUSIONS
This paper has documented systems design re-

quirements for accessibility. These are summarized

in the Appendix.

IBM’s extensive background in all fundamentals of

accessibility provides a comprehensive and unique

perspective for this field. Incorporating accessibility

in any platform or any product requires a

comprehensive strategy that goes beyond

enablement. To ensure a working solution, it is

critical that an accessible MVC architecture is in

place which supports an extensible yet comprehen-

sive accessibility API set, and at the same time

maintains responsiveness to user interactions.

Developer support, including authoring tools that

enforce accessibility, sample code, and robust

documentation, must be provided. System accessi-

bility features must be identified to ensure that the

platform supports them. A comprehensive set of

assistive technologies must be provided.

We have focused on solutions for users who are

blind or have low vision because of our extensive

experience in this area and because most of the

features used to produce a working solution for

these customers can be applied to other kinds of

accessibility solutions.

BRUNET ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005462

The evolution of the accessibility of the Windows

platform today clearly shows how failure to address

these requirements early dramatically affects the

cost to develop and support accessible solutions

both by the application developer and the developer

of the assistive technology.

APPENDIX

Systems design requirements for accessibility cov-

ered in this paper include requirements for a

platform accessibility architecture, requirements for

an assistive technology, and accessibility require-

ments for applications and tools.

Summary of requirements for a platform

accessibility architecture

These include the following:

1. An IT application must be structured so that the

application model, views of that model, and

control functions that modify the state of the

model, are well-isolated from one another. (See

‘‘MVC in the context of assistive technologies’’

and ‘‘Requirements for a platform accessibility

architecture.’’)

2. A robust object model containing the necessary

semantics must be maintained by the application

and communicated through the platform acces-

sibility API. (See ‘‘Object model’’ and ‘‘Accessi-

bility requirements for applications and tools.’’)

3. The object model must provide an API through

which an AT can obtain a set of actions and

descriptions for each object in the application,

and the object model must make all actions

available through programmatic access. (See

‘‘Object model.’’)

4. The platform architecture must provide methods

for describing the relationships among the objects

in the model. (See ‘‘Relationships among user

interface objects.’’)

5. The architecture must provide methods for event

protocols and event semantics through which the

AT is informed of state changes in the current

application model and of user inputs. (See

‘‘Events.’’)

6. The architecture must permit the AT to monitor

and modify user input events. (See ‘‘Events.’’)

Summary of requirements for an assistive

technology

These include the following:

1. The AT must provide for navigation to all

features and content using alternative input

devices. (See ‘‘Navigation to all features and

content.’’)

2. All information must be rendered using alter-

native output devices. (See ‘‘Rendering of all

information.’’)

3. Customization must be supported through set-

tings and scripting. (See ‘‘Customization through

settings and scripting.’’)

4. The AT must respond swiftly to user interactions.

(See ‘‘Performance.’’)

5. The AT must be compatible with other ATs. (See

‘‘Compatibility and interoperability.’’)

Summary of accessibility requirements for
applications and tools
These include the following:

1. The application’s object model containing the

necessary semantics must be maintained by the

application in the context of the accessibility

architecture. (See ‘‘Accessibility requirements for

applications and tools.’’)

2. Application development tools must provide a

palette of accessible controls, supply prompts

when application content is being created, verify

content, and repair inaccessible content. (See

‘‘Accessibility requirements for applications and

tools.’’)

*Trademark, service mark, or registered trademark of
International Business Machines Corporation.

**Trademark, service mark, or registered trademark of
Microsoft Corporation, Sun Microsystems, Inc., Linus Tor-
valds, Netscape Communications Corporation, Massachusetts
Institute of Technology, Algorithmic Implementations, Inc.,
The Open Group, or Apple Computer, Inc.

CITED REFERENCES AND NOTES
1. OS/2 Version 1.0 was released in December 1987; IBM

Screen Reader/2 Version 1.0 was made available in
December 1992. Java Version 1.0 was available in
January 1996, and the Java Accessibility API was
available as part of the Java Foundation Classes, also
known as JFC or Swing, in March 1998. GNOME 1.0 was
available in March of 1999, and the GNOME Accessibility
API was made available with GNOME 2.4 in September
2003.

2. History of IBM Accessibility, IBM Accessibility Center,
IBM Corporation, http://www.ibm.com/able/
access_ibm/history.html.

3. World Wide Web Consortium (W3C), http://
www.w3.org.

4. Web Accessibility Initiative (WAI), World Wide Web
Consortium (W3C), http://www.w3.org/WAI/.

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005 BRUNET ET AL. 463

5. Authoring Tool Accessibility Guidelines Working Group
(AUWG), Web Accessibility Initiative, World Wide Web
Consortium, http://www.w3c.org/WAI/AU/.

6. Java Foundation Classes (JFC/Swing), Sun Microsys-
tems, Inc., http://java.sun.com/products/jfc/.

7. The Eclipse Platform Subproject, The Eclipse Foundation,
http://eclipse.org/platform/index.html.

8. B. A. Feigenbaum and M. A. Squillace, ‘‘IBM Reflexive
User Interface Builder’’, IBM alphaWorks (July16, 2004),
http://www.alphaworks.ibm.com/tech/rib.

9. The Trace Research and Development Center at the
University of Wisconsin maintains a list of accessible
software guideline documents at http://trace.wisc.edu/
world/computer_access/software/.

10. Beyond ALT Text: Making the Web Easy to Use for Users
with Disabilities: 75 Best Practices for Websites and
Intranets, Based on Usability Studies with People Using
Assistive Technology, Nielsen Norman Group Report
(2001), http://www.nngroup.com/reports/accessibility/.

11. G. Vanderheiden, ‘‘Fundamental Principles and Priority
Setting for Universal Usability,’’ Proceedings of the ACM
2000 Conference on Universal Usability, Arlington, VA,
ACM Press, New York (2000), pp. 32–37.

12. A. Savidis and C. Stephanidis, ‘‘Developing Dual User
Interfaces for Integrating Blind and Sighted Users: The
HOMER UIMS,’’ Proceedings of the ACM SIGCHI Confer-
ence on Human Factors in Computing Systems, Denver,
CO, ACM Press, New York (1995), pp. 106–113.

13. J. Goldthwaite, ‘‘Accessibility Standards for Operating
Systems,’’ ACM SIGCAPH Newsletter 75, 2–3 (January
2003).

14. L. Seeman, ‘‘The Semantic Web, Web Accessibility, and
Device Independence,’’ Proceedings of the ACM Interna-
tional Cross-Disciplinary Workshop on Web Accessibility
(2004), pp. 67–73.

15. R. S. Schwerdtfeger, ‘‘Making the GUI Talk,’’ Byte
Magazine (December 1991), ftp://ftp.software.ibm.com/
sns/sr-os2/sr2doc/guitalk.txt.

16. G. E. Krasner and S. T. Pope, ‘‘A Cookbook for Using the
Model-View-Controller User Interface Paradigm in
Smalltalk-80,’’ Journal of Object-Oriented Programming 1,
No. 3, 26–49 (August 1988).

17. B. Shneiderman, ‘‘Promoting Universal Usability with
Multi-layer Interface Design,’’ Proceedings of the ACM
Conference on Universal Usability (2003), pp. 1–8.

18. ZoomText, Ai Squared, Inc., http://www.aisquared.com/
index.htm.

19. IBM Home Page Reader 3.04, IBM Accessibility Center,
IBM Corporation, http://www.ibm.com/able/
solution_offerings/hpr.html.

20. WebBrowser Control Overviews and Tutorials, Microsoft
Corporation, http://msdn.microsoft.com/
workshop/browser/webbrowser/browser_
control_ovw_entry.asp.

21. MS-DOS (then known as PC-DOS) from Microsoft
Corporation was introduced in August 1981.

22. IBM Screen Reader (for DOS) was announced in 1987.

23. Microsoft Accessibility, Microsoft Corporation, http://
www.msdn.microsoft.com/library/en-us/dnanchor/
html/accessibility.asp.

24. Java Accessibility, Sun Microsystems, Inc., http://
java.sun.com/j2se/1.4.2/docs/guide/access/index.html.

25. GNOME Accessibility for Developers, The GNOME Project,
http://developer.gnome.org/projects/gap/guide/gad/
index.html.

26. Disability Access to GNOME, The GNOME Project, http://
developer.gnome.org/projects/gap/.

27. Technical information for the Microsoft Longhorn
project is available at http://msdn.microsoft.com/
Longhorn/.

28. Technical information for UI Automation can be found by
searching or browsing the reference document at http://
winfx.msdn.microsoft.com/.

29. This description is taken from the World Wide Web
Consortium’s home page for semantic Web activity at
http://www.w3.org/2001/sw/. For an introduction to
RDF, refer to the ‘‘RDF Primer W3C Recommendation,’’
World Wide Web Consortium (February 2004), http://
www.w3.org/TR/2004/REC-rdf-primer-20040210/.

30. This specification is a work in progress by the W3C and
not yet externally available.

31. JAWS for Windows Overview, Freedom Scientific, Inc.,
http://www.freedomscientific.com/fs_products/
software_jaws.asp.

32. IBM Home Page Reader algorithms are described in the
document ‘‘IBM Home Page Reader 3.04—Online Help for
Developers,’’ IBM Corporation (January 2005), http://
www-306.ibm.com/able/solution_offerings/
hpr4devhelp.html.

33. Scott Clark, ‘‘Java Talks the Talk with IBM’s Self-Voicing
Kit,’’ EarthWeb Developer News (January 1999), http://
news.earthweb.com/dev-news/article.php/56261.

34. R. S. Schwerdtfeger and P. D. Jenkins, ‘‘IBM’s Self-
Voicing Kit Technology for Java: IBM’s Solution to Bring
Cross-Platform Accessibility to Mainstream Computing,’’
California State University at Northridge Center on
Disabilities 1999 Conference (CSUN 99) (March 1999),
http://www.dinf.ne.jp/doc/english/Us_Eu/conf/
csun_99/session0098.html.

35. Section 508 of the Rehabilitation Act: Electronic and
Information Technology Accessibility Standards, The
Access Board (December 2000), http://
www.access-board.gov/508.htm.

36. User Agent Accessibility Guidelines 1.0 W3C Recommen-
dation, World Wide Web Consortium (December
2002), http://www.w3.org/TR/2002/
REC-UAAG10-20021217/.

37. Web Guidelines References and Resources, IBM Accessi-
bility Center, IBM Corporation, http://www.ibm.com/
able/guidelines/web/webreferences.html.

38. K. Harris, ‘‘Making Eclipse Accessible to People of all
Abilities,’’ Presentation at EclipseCon 2004 (February
2004), http://www.eclipsecon.org/2004/
EclipseCon_2004_TechnicalTrackPresentations/
06_Harris.pdf.

39. ParaSoft WebKing, http://www.parasoft.com/jsp/
products/home.jsp?product=WebKing&itemId=105.

40. J. J. Lazzaro, ‘‘Taking the Mystery Out of Microsoft
Active Accessibility,’’ AccessWorld 1, No. 4, (July 2000),
http://www.afb.org/afbpress/
pub.asp?DocID=AW010404.

41. D. Klementiev, ‘‘Software Driving Software: Active
Accessibility-Compliant Apps Give Programmers New
Tools to Manipulate Software,’’ MSDN Magazine (April
2000), http://msdn.microsoft.com/msdnmag/issues/
0400/aaccess/default.aspx.

BRUNET ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005464

42. Disk Operating System, free-definition, http://
www.free-definition.com/disk-operating-system.html.

43. P. Schroeder, ‘‘A Brief History of Microsoft and Accessi-
bility,’’ AccessWorld 1, No. 4 (July 2000), http://
www.afb.org/afbpress/pub.asp?DocID=AW010402.

44. P. Corr, ‘‘Macintosh Utilities for Special Needs Users,’’
http://homepage.mac.com/corrp/macsupt/columns/
specneeds.html.

45. R. Bellinger, ‘‘Microsoft Grudgingly Given Credit for
Features in Windows 95 for Disabled,’’ EE Times (March
22, 1995).

46. D. Kendrick, ‘‘Inside Microsoft: An Accommodating
Workplace for People Who Are Blind?’’ AccessWorld 1,
No. 4 (July 2000), http://www.afb.org/afbpress/
pub.asp?DocID=AW010406.

47. Accessibility Aids May Not Work with Office Programs,
Microsoft Corporation, http://support.microsoft.com/
kb/q169975/.

48. Active Accessibility 1.3 SDK, Microsoft Corp. (April
2003), http://www.microsoft.com/downloads/
details.aspx?FamilyId=
4179742F-1F3D-4115-A8BA-2F7A6022B533&
displaylang=en.

49. ‘‘Microsoft Active Accessibility Version 1.2 is Now
Available!’’ http://teddy.fcc.ro/articles/MSAA.html.

50. Automating Word Using the Word Object Model, http://
msdn.microsoft.com/library/default.asp?url=/library/
en-us/dv_wrcore/html/
wroriAutomatingWordUsingWordObjectModel.asp.

51. ‘‘Get Ready to Swing (1.0),’’ JavaWorld (March 1998),
http://www.javaworld.com/javaworld/jw-03-1998/
jw-03-swinggui-p2.html.

52. R. S. Schwerdtfeger and P. D. Jenkins, ‘‘100% Pure Java:
IBM’s Focus to Develop Accessibility for the Next
Generation,’’ California State University at Northridge
Center on Disabilities 1998 Conference (CSUN 98) (March
1998), online proceedings, http://www.dinf.ne.jp/doc/
english/Us_Eu/conf/csun_98/csun98_051.htm#_
Toc412382694.

53. R. S. Schwerdtfeger, IBM Guidelines for Writing Acces-
sible Applications Using 100% Pure Java, IBM Accessi-
bility Center, IBM Corporation (August 2000), http://
www-306.ibm.com/able/guidelines/java/snsjavag.html.

54. P. Korn, ‘‘JDK 1.2.2, JFC 1.1.1, and Access Bridge EA1
released!’’ JAVA-ACCESS accessibility interest mailing
list archives (August 1999), http://
archives.java.sun.com/cgi-bin/
wa?A2=ind9908&L=java-access&F=&S=&P=69.

55. Accessible Copy of the Microsoft Active Accessibility SDK
Documentation, Microsoft Corporation (April 2003),
http://www.microsoft.com/downloads/details.aspx
?FamilyId=8BC82E65-DBEB-4BC4-9F27-8AC7DF6B7B77
&displaylang=en.

Accepted for publication February 28, 2005.

Peter Brunet
IBM Software Group, 11501 Burnet Road, Austin, TX 78758
(brunet@us.ibm.com). Mr. Brunet is a senior software
engineer in the Emerging Technologies area of the IBM
Software Group. He has been a primary developer or team
lead on accessibility products including Home Page Reader,
the IBM Java Self-Voicing Development Kit, Speech Viewer III,

PhoneAide, Thinking Out Loud, THINKablee, and
PhoneCommunicatore. Prior to developing accessibility
products, he developed robotics control language interpreters
for IBM robots and IBM Series 1e compiler runtime libraries
for BASIC, FORTRAN 77, COBOL, and PL/I. Prior to his IBM
career, he developed engineering software for super-
minicomputers. He has received an Outstanding Innovation
Award and an Entry Systems Division Award, has been
awarded several patents, and has authored several
publications. He holds a BSECE degree from the University of
Michigan and an MASCS degree from Florida Atlantic
University.

Barry Alan Feigenbaum
IBM Research Division, IBM Accessibility Center, 11501 Burnet
Road, Bldg 904, Austin, Texas 78758 (feigenba@us.ibm.com).
Dr. Feigenbaum is an architect in the IBM WorldWide
Accessibility Center where he provides architectural and
development support for IBM accessibility tools. He is the IBM
representative to the W3C Web Accessibility Initiative
authoring-tools working group. He created the Server Message
Block (SMB) network protocol used in IBM and Microsoft
networks and the Samba product, and he served on the design
team for the industry standard NETBIOS interface. He received
a NCSD TeamWork Recognition award, an IBM Outstanding
Innovation Award, an IBM Outstanding Technical
Achievement Award, five Invention Achievement Awards,
and numerous author recognition awards. He has co-authored
several award-winning books, several IBM technical reports,
and numerous articles in IBM and external publications. He
holds a Ph.D. degree in computer engineering from the
University of Miami, an M.E. degree in electrical engineering
from Florida Atlantic University, and a B.S. degree in electrical
engineering from the University of Florida.

Kip Harris
IBM Research Division, IBM Accessibility Center, 11501 Burnet
Road, Bldg 904, Austin, Texas 78758 (hkip@us.ibm.com). Mr.
Harris is a member of the IBM Worldwide Accessibility Center
in Austin, Texas, where he develops and evaluates assistive
technology. His most recent projects include a lead role in the
development of IBM Home Page Reader. He has been
recognized with a variety of awards and patents. Prior to
joining the Accessibility Center, Mr. Harris worked with a
wide variety of software technologies, including both system
and application product development and research work in
robotics. He holds a B.S. degree in computer science from
Tufts University and an M.S. degree in computer science from
the University of Texas at Austin.

Catherine Laws
IBM Research Division, IBM Accessibility Center, 11501 Burnet
Road, Bldg 904, Austin, Texas 78758 (claws@us.ibm.com).
Ms. Laws is a senior software engineer in the IBM Worldwide
Accessibility Center where she is the technical team lead and
user interface designer for developing assistive technologies
and tools such as IBM Home Page Reader. She also led
development teams for the IBM Screen Reader, SpeechViewer,
and THINKable projects, holds two patents related to
SpeechViewer, and is the IBM representative to the W3C user
agent accessibility guidelines working group. She has a B.A.
degree in computer science and business administration from
Texas Christian University and an M.S. degree in computing
technology in education from Nova Southeastern University.

Richard Schwerdtfeger
IBM Software Group, Emerging Internet Technologies, 11501
Burnet Road, Bldg 902, Austin, Texas 78758
(schwer@us.ibm.com). Mr. Schwerdtfeger is a Senior
Technical Staff Member, the Software Group Accessibility
Strategist and Architect in Emerging Technologies, chair of the
IBM Accessibility Architecture Review Board, and an IBM

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005 BRUNET ET AL. 465

Published online August 3, 2005.

Master Inventor with over 43 patent filings. His
responsibilities include overall accessibility architecture and
strategy for IBM Software Group. He is a working member of
the working groups for W3C WAI Protocols and Formats and
HTML, and previously for the User Agent Accessibility
Guidelines, which are now a W3C recommendation. Mr.
Schwerdtfeger joined IBM at the Thomas J. Watson Research
Center in 1993, where he helped design and develop IBM
Screen Reader/2. He later led Java accessibility development
at IBM, including the Java accessibility collaboration between
IBM and Sun Microsystems and the Self-Voicing Kit for Java,
co-designed the Java Accessibility API, and was architectural
lead on the Web Accessibility Gateway, which was a
transcoding gateway for seniors. He is the co-author of Secrets
of the OS/2 Warp Masters and the author of IBM Guidelines for
Writing Accessible Applications Using 100% Pure Javae. He
has also published articles, such as ‘‘Making the GUI Talk’’ for
Byte magazine. He has a B.S. degree in engineering from the
University of Connecticut.

Lawrence Weiss
IBM Software Group, Emerging Internet Technologies, 11501
Burnet Road, Bldg 902, Austin, Texas 78758
(lweiss@us.ibm.com). Mr. Weiss is a senior software engineer
and the current architect of the Self-Voicing Development Kit
for Java, an IBM internal tool that facilitates the development
of accessible talking Java applications. He began developing
products for people with disabilities when he joined Special
Needs Systems in 1988, contributing to several releases of
Screen Reader/DOS, Screen Reader/2, Screen Magnifier/2,
and SpeechViewere. In the Accessibility Center, he helped
design and develop the Java accessibility API in collaboration
with Sun Microsystems, and Home Page Reader, the talking
Web browser. Mr. Weiss has presented and demonstrated
these and other IBM technologies at many disabilities
conferences. He currently holds 16 patents in the field of
accessibility with more pending, and is a member of the
Austin Software Group Invention Evaluation Board to
evaluate and include accessibility in IBM intellectual property.
He has a B.S. degree in business administration from the
University of North Carolina at Chapel Hill. &

BRUNET ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005466

