A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2018; you can also visit the original URL.
The file type is application/pdf
.
Minimisation and reduction of 2-, 3- and 4-coverings of elliptic curves
2010
Algebra & Number Theory
In this paper we consider models for genus one curves of degree n for n = 2, 3 and 4, which arise in explicit n-descent on elliptic curves. We prove theorems on the existence of minimal models with the same invariants as the minimal model of the Jacobian elliptic curve and provide simple algorithms for minimising a given model, valid over general number fields. Finally, for genus one models defined over Q, we develop a theory of reduction and again give explicit algorithms for n = 2, 3 and 4.
doi:10.2140/ant.2010.4.763
fatcat:ixasahvribel5dbiltlbc4rmti