Local Asymmetry and the Inner Radius of Nodal Domains

Dan Mangoubi
2008 Communications in Partial Differential Equations  
Let M be a closed Riemannian manifold of dimension n. Let f be an eigenfunction of the Laplace-Beltrami operator corresponding to an eigenvalue λ. We show that the volume of f>0 inside any ball B whose center lies on f=0 is > C|B|/λ^n. We apply this result to prove that each nodal domain contains a ball of radius > C/λ^n.
doi:10.1080/03605300802038577 fatcat:tqst6kdydneiri3s73mbhd3pxa