How does the protein environment optimize the thermodynamics of thiol sulfenylation? Insights from model systems to QM/MM calculations on human 2-Cys peroxiredoxin

Julianna Oláh, Laura van Bergen, Frank De Proft, Goedele Roos
2014 Journal of Biomolecular Structure and Dynamics  
Protein thiol/sulfenic acid oxidation potentials provide a tool to select specific oxidation agents, but are experimentally difficult to obtain. Here, insights into the thiol sulfenylation thermodynamics is obtained from model calculations on small systems and from a quantum mechanics/molecular mechanics (QM/MM) analysis on human 2-Cys peroxiredoxin thioredoxin peroxidase B (Tpx-B). To study thiol sulfenylation in Tpx-B, our recently developed computational method to determine reduction
more » ... ls relatively compared to a reference system and based on reaction energies (REE) is updated. Tpx-B forms a sulfenic acid (R-SO -) on one of its active site cysteines during reactive oxygen scavenging. The observed effect of the conserved active site residues is consistent with the observed hydrogen bond interactions in the QM/MM optimized Tpx-B structures and with free energy calculations on small model systems. The ligand effect could be linked to the complexation energies of ligand L with CH 3 Sand CH 3 SO -. Compared to QM only calculations on Tpx-B's active site, the QM/MM calculations give an improved understanding of sulfenylation thermodynamics by showing that other residues from the protein environment other than the active site residues can play an important role.
doi:10.1080/07391102.2014.907543 pmid:24762169 fatcat:v7xpitpcxfanzcr6nfwz4jgruq