Neural-based hierarchical approach for detailed dominant forest species classification by multispectral satellite imagery

Svetlana Illarionova, Alexey Trekin, Vladimir Ignatiev, Ivan Oseledets
2020 IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing  
Among different forest inventory problems, one of the most basic is defining dominant species. This data is crucial in forest management to determine forest category, and a cheaper remote sensing-based approach would be a useful supplement to field surveys. We used WorldView multispectral satellite imagery to address this problem as an image segmentation task dividing the image into regions with particular dominant species. Neural networks have recently become one of the most useful tools for
more » ... useful tools for this kind of problem, including incomplete or erroneous training labels. However, it is still challenging to distinguish between such similar patterns as different forest compositions. To handle this, we represented the multi-class forest classification problem as a hierarchical set of binary classification tasks, which allowed us to reach better results with both high-and medium-resolution satellite imagery. We also examined supplementary data such as tree height to improve the species classification results for wider tree age diversity. We conducted experiments considering six neural network architectures to find the best one for each task in the hierarchical decomposition. The proposed approach was tested on sample territories in Leningrad Oblast of Russia, for which the field-based observations were acquired and made publicly available as a single dataset. The proposed approach showed significantly better results (average F1-score 0.84) than multi-class classification (average F1-score 0.7).
doi:10.1109/jstars.2020.3048372 fatcat:alhwxexjhrd4heft2g75bhpbty