Power efficiency through tuple ranking in wireless sensor network monitoring

Panayiotis Andreou, Demetrios Zeinalipour-Yazti, Panos K. Chrysanthis, George Samaras
2010 Distributed and parallel databases  
In this paper, we present an innovative framework for efficiently monitoring Wireless Sensor Networks (WSNs). Our framework, coined KSpot, utilizes a novel top-k query processing algorithm we developed, in conjunction with the concept of in-network views, in order to minimize the cost of query execution. For ease of exposition, consider a set of sensors acquiring data from their environment at a given time instance. The generated information can conceptually be thought as a horizontally
more » ... ed base relation R. Furthermore, the results to a user-defined query Q, registered at some sink point, can conceptually be thought as a view V . Maintaining consistency between V and R is very expensive in terms of communication and energy. Thus, KSpot focuses on a subset V ′ (⊆ V ) that unveils only the k highest-ranked answers at the sink, for some user defined parameter k. To illustrate the efficiency of our framework, we have implemented a real system in nesC, which combines the traditional advantages of declarative acquisition frameworks, like TinyDB, with the ideas presented in this work. Extensive real-world testing and experimentation with traces from University of California-Berkeley, the University of Washington and Intel Research Berkeley, show that KSpot provides an up to 66% of energy savings compared to TinyDB, minimizes both the size and number of packets transmitted over the network (up to 77%), and prolongs the longevity of a WSN deployment to new scales.
doi:10.1007/s10619-010-7072-5 fatcat:3pwoj6o7ovgn5kknlcdqsxh2hq