Diffusion Enhanced Upconversion in Organic Systems

A. Monguzzi, R. Tubino, F. Meinardi
2008 International Journal of Photoenergy  
The upconverted fluorescence generation in a solution of multicomponent organic systems has been studied as a function of the temperature to investigate the role of resonant energy transfer processes and of the molecular diffusion on the overall emission yield. The strong blue emission observed exciting the samples at 532 nm derives from a bimolecular triplet-triplet annihilation between 9,10 diphenylanthracene molecules, which produces singlet excited states from which the higher energy
more » ... n takes place. Diphenylanthracene excited triplet states are populated by energy transfer from a phosphorescent donor (Pt(II)octaethylporphyrin) which acts as excitation light harvesting. At low temperature, the experimental data on the efficiency of the transfer have been interpreted in the frame of a Dexter energy transfer in the Perrin approximation. At room temperature, the fast diffusion of the molecules has been found to be the main factor which affects the energy transfer rates and the overall photon upconversion efficiency.
doi:10.1155/2008/684196 fatcat:ugat6ksy5ncqhiunldlcjybvbi