Enriched conditioning expands the regenerative ability of sensory neurons after spinal cord injury via neuronal intrinsic redox signaling

Francesco De Virgiliis, Thomas H. Hutson, Ilaria Palmisano, Sarah Amachree, Jian Miao, Luming Zhou, Rositsa Todorova, Richard Thompson, Matt C. Danzi, Vance P. Lemmon, John L. Bixby, Ilka Wittig (+2 others)
2020 Nature Communications  
AbstractOvercoming the restricted axonal regenerative ability that limits functional repair following a central nervous system injury remains a challenge. Here we report a regenerative paradigm that we call enriched conditioning, which combines environmental enrichment (EE) followed by a conditioning sciatic nerve axotomy that precedes a spinal cord injury (SCI). Enriched conditioning significantly increases the regenerative ability of dorsal root ganglia (DRG) sensory neurons compared to EE or
more » ... a conditioning injury alone, propelling axon growth well beyond the spinal injury site. Mechanistically, we established that enriched conditioning relies on the unique neuronal intrinsic signaling axis PKC-STAT3-NADPH oxidase 2 (NOX2), enhancing redox signaling as shown by redox proteomics in DRG. Finally, NOX2 conditional deletion or overexpression respectively blocked or phenocopied enriched conditioning-dependent axon regeneration after SCI leading to improved functional recovery. These studies provide a paradigm that drives the regenerative ability of sensory neurons offering a potential redox-dependent regenerative model for mechanistic and therapeutic discoveries.
doi:10.1038/s41467-020-20179-z pmid:33349630 fatcat:cprvykm2abhu7ixo6camwcx7ay