A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2019; you can also visit the original URL.
The file type is application/pdf
.
Some Heuristics about Elliptic Curves
2008
Experimental Mathematics
We give some heuristics for counting elliptic curves with certain properties. In particular, we re-derive the Brumer-McGuinness heuristic for the number of curves with positive/negative discriminant up to X, which is an application of lattice-point counting. We then introduce heuristics (with refinements from random matrix theory) that allow us to predict how often we expect an elliptic curve E with even parity to have L(E, 1) = 0. We find that we expect there to be about c 1 X 19/24 (log X)
doi:10.1080/10586458.2008.10129019
fatcat:wtah4zyhsbdwxize5dccqocda4