Some Heuristics about Elliptic Curves

Mark Watkins
2008 Experimental Mathematics  
We give some heuristics for counting elliptic curves with certain properties. In particular, we re-derive the Brumer-McGuinness heuristic for the number of curves with positive/negative discriminant up to X, which is an application of lattice-point counting. We then introduce heuristics (with refinements from random matrix theory) that allow us to predict how often we expect an elliptic curve E with even parity to have L(E, 1) = 0. We find that we expect there to be about c 1 X 19/24 (log X)
more » ... curves with |∆| < X with even parity and positive (analytic) rank; since Brumer and McGuinness predict cX 5/6 total curves, this implies that asymptotically almost all even parity curves have rank 0. We then derive similar estimates for ordering by conductor, and conclude by giving various data regarding our heuristics and related questions.
doi:10.1080/10586458.2008.10129019 fatcat:wtah4zyhsbdwxize5dccqocda4