Exosomal miR-223 derived from natural killer cells inhibits hepatic stellate cell activation by suppressing autophagy

Ling Wang, Yinghao Wang, Jun Quan
2020 Molecular Medicine  
Activation of hepatic stellate cells (HSCs) is a prominent driver of liver fibrosis. We previously demonstrated that exosomes derived from natural killer (NK) cells (NK-Exo) attenuated TGF-β1-induced HSC activation. Herein, this study was designed to investigate the mechanism underlying the action of NK-Exo. NK-Exo was isolated from NK-92MI cells and then administered into TGF-β1-treated LX-2 (human HSC line) cells. MiR-223 expression in NK-Exo was downregulated by transfecting NK-92MI cells
more » ... ng NK-92MI cells with miR-223 inhibitor followed by exosome isolation. The HSC activation was evaluated by determining cell proliferation using CCK-8 assay and measuring the protein levels of α-SMA and CoL1A1 using western blot in LX-2 cells. The expression of miR-223 was detected by qRT-PCR. The interaction between miR-223 and ATG7 was analyzed by a dual-luciferase activity assay. The autophagy was evaluated by measuring the autophagy-related proteins using western blot. miR-223 was highly expressed in NK-Exo and inhibition of miR-223 expression in NK-Exo abrogated the inhibitory effect of NK-Exo on TGF-β-induced HSC activation. ATG7 was confirmed as a direct target of miR-223. Furthermore, treatment with the autophagy activator rapamycin and ATG7 overexpression in LX-2 cells abolished the HSC activation-suppressive effect of NK-Exo. NK-Exo attenuated TGF-β-induced HSC activation by transferring miR-223 that inhibited autophagy via targeting ATG7.
doi:10.1186/s10020-020-00207-w pmid:32873229 fatcat:uomumihg7bfg5jjsqhvxbvmi24